• Title/Summary/Keyword: IoT Devices Security

Search Result 379, Processing Time 0.032 seconds

A Secure Healthcare System Using Holochain in a Distributed Environment

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.261-269
    • /
    • 2023
  • We propose to design a Holochain-based security and privacy protection system for resource-constrained IoT healthcare systems. Through analysis and performance evaluation, the proposed system confirmed that these characteristics operate effectively in the IoT healthcare environment. The system proposed in this paper consists of four main layers aimed at secure collection, transmission, storage, and processing of important medical data in IoT healthcare environments. The first PERCEPTION layer consists of various IoT devices, such as wearable devices, sensors, and other medical devices. These devices collect patient health data and pass it on to the network layer. The second network connectivity layer assigns an IP address to the collected data and ensures that the data is transmitted reliably over the network. Transmission takes place via standardized protocols, which ensures data reliability and availability. The third distributed cloud layer is a distributed data storage based on Holochain that stores important medical information collected from resource-limited IoT devices. This layer manages data integrity and access control, and allows users to share data securely. Finally, the fourth application layer provides useful information and services to end users, patients and healthcare professionals. The structuring and presentation of data and interaction between applications are managed at this layer. This structure aims to provide security, privacy, and resource efficiency suitable for IoT healthcare systems, in contrast to traditional centralized or blockchain-based systems. We design and propose a Holochain-based security and privacy protection system through a better IoT healthcare system.

IoT Industry & Security Technology Trends

  • Park, Se-Hwan;Park, Jong-Kyu
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.27-31
    • /
    • 2016
  • High-tech industries in a state well enough to troubleshoot hacking information introduction a big barrier to delay the growth of the market related to IoT(Internet of Things) as is likely to be on the rise. This early on, security issues introduced in the solution, a comprehensive solution, including the institutional laws/precautions needed. Recent examples of frequent security threats while IoT is the biggest issue of introducing state-of-the-art industry information due to the vulnerable security hacking. This high-tech industries in order to bridge the information responsible for the target attribute, target range, and the protection of security and how to protect the subject, IoT environment (domestic industrial environment) considering the approach is needed. IoTs with health care and a wide variety of services, such as wearable devices emerge. This ensures that RFID/USN-based P2P/P2M/M2M connection is the implementation of the community. In this study, the issue on the high-tech industrial information and the vulnerable security issues of IoT are described.

An Intelligent Machine Learning Inspired Optimization Algorithm to Enhance Secured Data Transmission in IoT Cloud Ecosystem

  • Ankam, Sreejyothsna;Reddy, N.Sudhakar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.83-90
    • /
    • 2022
  • Traditional Cloud Computing would be unable to safely host IoT data due to its high latency as the number of IoT sensors and physical devices accommodated on the Internet grows by the day. Because of the difficulty of processing all IoT large data on Cloud facilities, there hasn't been enough research done on automating the security of all components in the IoT-Cloud ecosystem that deal with big data and real-time jobs. It's difficult, for example, to build an automatic, secure data transfer from the IoT layer to the cloud layer, which incorporates a large number of scattered devices. Addressing this issue this article presents an intelligent algorithm that deals with enhancing security aspects in IoT cloud ecosystem using butterfly optimization algorithm.

Hardware Interlocking Security System with Secure Key Update Mechanisms In IoT Environments (IoT 환경에서의 안전한 키 업데이트를 위한 하드웨어 연동 보안 시스템)

  • Saidov, Jamshid;Kim, Bong-Keun;Lee, Jong-Hyup;Lee, Gwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.671-678
    • /
    • 2017
  • Recent advances in Internet of Things (IoT) encourage us to use IoT devices in daily living areas. However, as IoT devices are being ubiquitously used, concerns onsecurity and privacy of IoT devices are getting grown. Key management is an important and fundamental task to provide security services. For better security, we should restrict reusing a same key in sequential authentication sessions, but it is difficult to manually update and memorize keys. In this paper, we propose a hardware security module(HSM) for automated key management in IoT devices. Our HSM is attached to an IoT device and communicates with the device. It provides an automated, secure key update process without any user intervention. The secure keys provided by our HSM can be used in the user and device authentications for any internet services.

A lightweight true random number generator using beta radiation for IoT applications

  • Park, Kyunghwan;Park, Seongmo;Choi, Byoung Gun;Kang, Taewook;Kim, Jongbum;Kim, Young-Hee;Jin, Hong-Zhou
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.951-964
    • /
    • 2020
  • This paper presents a lightweight true random number generator (TRNG) using beta radiation that is useful for Internet of Things (IoT) security. In general, a random number generator (RNG) is required for all secure communication devices because random numbers are needed to generate encryption keys. Most RNGs are computer algorithms and use physical noise as their seed. However, it is difficult to obtain physical noise in small IoT devices. Since IoT security functions are required in almost all countries, IoT devices must be equipped with security algorithms that can pass the cryptographic module validation programs of each country. In this regard, it is very cumbersome to embed security algorithms, random number generation algorithms, and even physical noise sources in small IoT devices. Therefore, this paper introduces a lightweight TRNG comprising a thin-film beta-radiation source and integrated circuits (ICs). Although the ICs are currently being designed, the IC design was functionally verified at the board level. Our random numbers are output from a verification board and tested according to National Institute of Standards and Technology standards.

Design Method of Things Malware Detection System(TMDS) (소규모 네트워크의 IoT 보안을 위한 저비용 악성코드 탐지 시스템 설계 방안 연구)

  • Sangyoon Shin;Dahee Lee;Sangjin Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.459-469
    • /
    • 2023
  • The number of IoT devices is explosively increasing due to the development of embedded equipment and computer networks. As a result, cyber threats to IoT are increasing, and currently, malicious codes are being distributed and infected to IoT devices and exploited for DDoS. Currently, IoT devices that are the target of such an attack have various installation environments and have limited resources. In addition, IoT devices have a characteristic that once set up, the owner does not care about management. Because of this, IoT devices are becoming a blind spot for management that is easily infected with malicious codes. Because of these difficulties, the threat of malicious codes always exists in IoT devices, and when they are infected, responses are not properly made. In this paper, we will design an malware detection system for IoT in consideration of the characteristics of the IoT environment and present detection rules suitable for use in the system. Using this system, it will be possible to construct an IoT malware detection system inexpensively and efficiently without changing the structure of IoT devices that are already installed and exposed to cyber threats.

Implementation of a MTM-based secure OTP Generator for IoT Devices (IoT 디바이스를 위한 MTM 기반의 안전한 OTP 생성기 구현)

  • Kim, Young-Sae;Han, Jin-Hee;Jeon, Yong-Sung;Kim, Jung-Nyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.199-206
    • /
    • 2015
  • In this paper, we present the implementation of a secure OTP(One Time Password) generator for IoT(Internet of Things) devices. Basically, MTM(Mobile Trusted Module) is used and expanded considering secure IoT services. We combine the MTM architecture with a new hardware-based OTP generation engine. The new architecture is more secure, offering not only the security of devices but also that of the OTP service. We have implemented and verified the MTM-based OTP generator on a real mobile platform embedded with the MTM chip. The proposed method can be used as a solution for enhancing security of IoT devices and services.

A Survey on Detecting Interactions among Different Devices/Apps in IoT (IoT 분야의 다양한 기기/앱 간 상호작용 검출에 관한 연구동향)

  • Yicheng Zhen;Yeonjoon Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.101-103
    • /
    • 2023
  • With the recent advances in communication technology and Internet of Things (IoT) infrastructure, home automation systems have emerged as a new paradigm for providing users with convenient smart home services. The IoT ecosystem has merged digital systems with the physical world, dramatically changing the way people live and work. However, at the same time, security remains one of the most significant research issues in IoT, as the deployment and application of high-availability systems come with various security risks that cause serious threats to users. Among them, the security issues arising from the interaction among devices/applications should not be underestimated. Attackers can exploit interactions among devices/applications to hack into the user's home. In this paper, we present a survey of research on detecting various types of interactions among devices/applications in IoT.

Technologies Analysis based on IoT Security Requirements and Secure Operating System (IoT 보안 요구사항 및 보안 운영체제 기반 기술 분석)

  • Ko, Jae-Yong;Lee, Sang-Gil;Kim, Jin-Woo;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.4
    • /
    • pp.164-177
    • /
    • 2018
  • As the market for IoT devices grows, it is expected that the scale of malware attack will be considerable. Accordingly, the improvement of related legislation has been actively promoted, the recently strengthened Information and Communication Network Act was enforced. Because IoT related accidents can lead to not only financial damages but also human accidents, IoT device Security has been attracted a great deal of attention. In this paper, IoT devices provide essential security functions through legal and technical perspectives, and analyze related technologies. This can be used to a reference for the Start-up developer and IoT device designer.

Hacking and Security Trends in IoT Devices (IoT 기기의 해킹 사건과 보안 동향)

  • Young-Sil Lee;Ga-Hyeon Lee;Hoon-Jae Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.219-220
    • /
    • 2023
  • 현재 IoT 기기들은 일상생활에서 필수 가전기기가 되어가고 있다. 가정에서는 스마트홈으로 연결된 냉장고, 세탁기, 인공지능 스피커 등이 이미 많이 사용되고 있으며, 자율주행 차량과 키오스크 등 하루에도 매우 다양한 IoT 기기들을 가깝게 접하고 있다. 스마트 워치(Smart Watch)가 출시된 이후로는 IoT 기기가 매 순간 사용되며 사용자 개인정보와 사생활 등 중요하고 예민한 정보와 기업의 기밀 정보가 자동으로 기기에 저장되고 있다. 이러한 이유로 해커들의 타깃이 되어 새로운 해킹 수법이 발생하고 보안 취약점이 발견되고 있다. 본 논문에서는 IoT 기기에 관련하여 최근에 발생하는 해킹 사건들과 보안 취약점을 분석하고 이에 따른 대책을 알아보고자 한다.

  • PDF