• Title/Summary/Keyword: IoT Applications

Search Result 478, Processing Time 0.035 seconds

The Influence of Learning Styles on a Model of IoT-based Inclusive Education and Its Architecture

  • Sayassatov, Dulan;Cho, Namjae
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.5
    • /
    • pp.27-39
    • /
    • 2019
  • The Internet of Things (IoT) is a new paradigm that is revolutionizing computing. It is intended that all objects around us will be connected to the network, providing "anytime, anywhere" access to information. This study introduces IoT with Kolb's learning style in order to enhance the learning experience especially for inclusive education for primary and secondary schools where delivery of knowledge is not limited to physical, cognitive disabilities, human diversity with respect to ability, language, culture, gender, age and of other forms of human differences. The article also emphasizes the role of learning style as a discovery process that incorporates the characteristics of problem solving and learning. Kolb's Learning Style was chosen as it is widely used in research and in practical information systems applications. A consistent pattern of finding emerges by using a combination of Kolb's learning style and internet of things where specific individual differences, learning approach differences and IoT application differences are taken as a main research framework. Further several suggestions were made by using this combination to IoT architecture and smart environment of internet of things. Based on these suggestions, future research directions are proposed.

S-mote: SMART Home Framework for Common Household Appliances in IoT Network

  • Park, Dong-Min;Kim, Seong-Kyu;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.449-456
    • /
    • 2019
  • SMART home is one of the most popular applications of Internet-of-Things (IoT) technologies, which is expanding in terms of range of applications. SMART home technology provides convenience at home by connecting household appliances to a single network, control, and management. However, many general home appliances do not support the network functions yet; hence, enjoying such convenient technology could be difficult, and it could be expensive in the beginning to build the framework. In addition, even though products with SMART home technologies are purchased, the control systems could differ from device to device. Thus, in this paper, we propose a SMART home framework, called an S-mote that can operate all the IoT functions in a single application by adding an infrared or radio frequency module to general home appliances. The proposed framework is analyzed using four types of performance tests by five evaluators. The results of the experiment show that the SMART home environment was implemented successfully and that it functions appropriately, without any operational issues, with various home appliances, including the latest IoT devices, and even those equipped with an infrared or radio frequency module.

A CMOS Wideband RF Energy Harvester Employing Tunable Impedance Matching Network for Video Surveillance Disposable IoT Applications (가변 임피던스 매칭 네트워크를 이용한 영상 감시 Disposable IoT용 광대역 CMOS RF 에너지 하베스터)

  • Lee, Dong-gu;Lee, Duehee;Kwon, Kuduck
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.2
    • /
    • pp.304-309
    • /
    • 2019
  • This paper presents a CMOS RF-to-DC converter for video surveillance disposable IoT applications. It widely harvests RF energy of 3G/4G cellular low-band frequency range by employing a tunable impedance matching network. The proposed converter consists of the differential-drive cross-coupled rectifier and the matching network with a 4-bit capacitor array. The proposed converter is designed using 130-nm standard CMOS process. The designed energy harvester can rectify the RF signals from 700 MHz to 900 MHz. It has a peak RF-to-DC conversion efficiency of 72.25%, 64.97%, and 66.28% at 700 MHz, 800 MHz, and 900 MHz with a load resistance of 10kΩ, respectively.

Design and Evaluation of a Quorum-Based Adaptive Dissemination Algorithm for Critical Data in IoTs (IoT에서 중요한 데이터를 위한 쿼럼 기반 적응적 전파 알고리즘의 설계 및 평가)

  • Bae, Ihn Han;Noh, Heung Tae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.913-922
    • /
    • 2019
  • The Internet of Things (IoT) envisions smart objects collecting and sharing data at a massive scale via the Internet. One challenging issue is how to disseminate data to relevant data consuming objects efficiently. In such a massive IoT network, Mission critical data dissemination imposes constraints on the message transfer delay between objects. Due to the low power and communication range of IoT objects, data is relayed over multi-hops before arriving at the destination. In this paper, we propose a quorum-based adaptive dissemination algorithm (QADA) for the critical data in the monitoring-based applications of massive IoTs. To design QADA, we first design a new stepped-triangular grid structures (sT-grid) that support data dissemination, then construct a triangular grid overlay in the fog layer on the lower IoT layer and propose the data dissemination algorithm of the publish/subscribe model that adaptively uses triangle grid (T-grid) and sT-grid quorums depending on the mission critical in the overlay constructed to disseminate the critical data, and evaluate its performance as an analytical model.

Technology Trends in Industrial Internet-of-Things Networks (산업용 사물인터넷 네트워크 기술 동향)

  • Kang, H.Y.;Park, M.R.;Lee, S.S.;Shin, C.S.;Park, C.W.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.5
    • /
    • pp.92-102
    • /
    • 2021
  • Owing to various restrictions in-field application, the low-speed, low-power-based industrial Internet-of-Things (IoT) network built in extremely harsh industrial environment sites requires multi-hop, channel hopping, and low-latency transmission characteristics. In the past, wired networks were used in industrial facilities; however, network technologies based on the Industrial IoT Network standard standardized for industrial applications, such as WirelessIO link, WirelessHART, SmartMesh, and eStar Link satisfy industrial requirements. Recently, the use of industrial IoT networks in industrial facilities has rapidly expanded. This paper covers the developments in industrial IoT network technologies and summarizes the major industrial IoT standard technologies that meets the requirements of industrial sites.

A Study on Performance Analysis of a Messaging System in IoT Environments (IoT 환경에서의 메시징 시스템의 성능 분석에 관한 연구)

  • Young-Dong Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.112-118
    • /
    • 2023
  • Internet of Things(IoT) technology is developing to a stage where the Internet and objects are connected and objects themselves analyze and judge data to interconnect the real world and the virtual world in real time. This technology consists of sensors, actuators, devices, and networks, and it is being applied in various fields. As the number of IoT devices and applications increases, data traffic also increases. In this paper, a messaging system is designed and implemented in order to analyze the performance between an IoT device and MQTT broker. The experimental was performed to measure MQTT-based round-trip time and message transmission time between the IoT device and the broker. The result shows that there is no packet loss, and propagation delay affects round-trip time.

The Analysis of Association between Learning Styles and a Model of IoT-based Education : Chi-Square Test for Association

  • Sayassatov, Dulan;Cho, Namjae
    • Journal of Information Technology Applications and Management
    • /
    • v.27 no.3
    • /
    • pp.19-36
    • /
    • 2020
  • The Internet of things (IoT) is a system of interrelated computed devices, digital machines and any physical objects which are provided with unique identifiers and the potential to transmit data to people or machine (M2M) without requiring human interaction. IoT devices can be used to monitor and control the electrical and electronic systems used in different fields like smart home, smart city, smart healthcare and etc. In this study we introduce four imaginary IoT devices as a learning support assistants according to students' dominant learning styles measured by Honey and Mumford Learning Styles: Activists, Reflectors, Theorists and Pragmatists. This research emphasizes the association between students' strong learning styles and a preference to appropriate IoT devices with specific characteristics. Moreover, different levels of IoT devices' architecture are clearly explained in this study where all the artificial devices are designed based on this structure. Data analysis of experiment were measured by the use of chi square test for association and research results showed the statistical significance of the estimated model and the impacts of each category over the model where we finally got accurate estimates for our research variables. This study revealed the importance of considering the students' dominant learning styles before inventing a new IoT device.

A Study on the Security Framework for IoT Services based on Cloud and Fog Computing (클라우드와 포그 컴퓨팅 기반 IoT 서비스를 위한 보안 프레임워크 연구)

  • Shin, Minjeong;Kim, Sungun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1928-1939
    • /
    • 2017
  • Fog computing is another paradigm of the cloud computing, which extends the ubiquitous services to applications on many connected devices in the IoT (Internet of Things). In general, if we access a lot of IoT devices with existing cloud, we waste a huge amount of bandwidth and work efficiency becomes low. So we apply the paradigm called fog between IoT devices and cloud. The network architecture based on cloud and fog computing discloses the security and privacy issues according to mixed paradigm. There are so many security issues in many aspects. Moreover many IoT devices are connected at fog and they generate much data, therefore light and efficient security mechanism is needed. For example, with inappropriate encryption or authentication algorithm, it causes a huge bandwidth loss. In this paper, we consider issues related with data encryption and authentication mechanism in the network architecture for cloud and fog-based M2M (Machine to Machine) IoT services. This includes trusted encryption and authentication algorithm, and key generation method. The contribution of this paper is to provide efficient security mechanisms for the proposed service architecture. We implemented the envisaged conceptual security check mechanisms and verified their performance.

A Study on the Applications of ICT/IoT for Jeju Haenyeo Culture, an UNESCO Intangible Cultural Heritage

  • Yoo, Jae Ho;Jung, Yeon Kyu
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.213-222
    • /
    • 2017
  • The advancement of ICT is changing every field of life. It becomes possible with the penetration of personalized devices, that is, smartphone. The boom of IoT will come when there exist diversified and personalized services. In general, we might admit that it is needed that the more privatized services than the overall serviced. Jeju Island is the only one special self-governing province in Republic of Korea and deserves to be proud of the unique culture from its long historical background. One of the very regional culture which performs by women divers, Haenyeo activity or culture, was registered as Intangible Cultural Heritage. When authors were researched Jeju Haenyeo as a worthy reserving service, we recognized that it has never considered to use any point of ICT/IoT yet. Because IoT holds the high potentiality to create any service scenario between interesting groups. We will design a few services for Haenyeo which covers their job territory or daily life, adopts up-to-date technology or method such as sensored network, smart contract and App/Web. In this paper, we intent to show the simplicity and easiness of the application of IoT not to much inconspicuous target. So, we suggest a specialized IoT service for the reservation and promotion of Haenyeo Culture. This service would be composed of sensors, IoT network and App/Web at home and office. This service can be used among interesting groups : Haenyeo, policy maker, manufacturer, service provider and culture consumer.

A Comprehensive Analyses of Intrusion Detection System for IoT Environment

  • Sicato, Jose Costa Sapalo;Singh, Sushil Kumar;Rathore, Shailendra;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.975-990
    • /
    • 2020
  • Nowadays, the Internet of Things (IoT) network, is increasingly becoming a ubiquitous connectivity between different advanced applications such as smart cities, smart homes, smart grids, and many others. The emerging network of smart devices and objects enables people to make smart decisions through machine to machine (M2M) communication. Most real-world security and IoT-related challenges are vulnerable to various attacks that pose numerous security and privacy challenges. Therefore, IoT offers efficient and effective solutions. intrusion detection system (IDS) is a solution to address security and privacy challenges with detecting different IoT attacks. To develop an attack detection and a stable network, this paper's main objective is to provide a comprehensive overview of existing intrusion detections system for IoT environment, cyber-security threats challenges, and transparent problems and concerns are analyzed and discussed. In this paper, we propose software-defined IDS based distributed cloud architecture, that provides a secure IoT environment. Experimental evaluation of proposed architecture shows that it has better detection and accuracy than traditional methods.