• Title/Summary/Keyword: IoT Applications

Search Result 478, Processing Time 0.034 seconds

Efficient IoT data processing techniques based on deep learning for Edge Network Environments (에지 네트워크 환경을 위한 딥 러닝 기반의 효율적인 IoT 데이터 처리 기법)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.325-331
    • /
    • 2022
  • As IoT devices are used in various ways in an edge network environment, multiple studies are being conducted that utilizes the information collected from IoT devices in various applications. However, it is not easy to apply accurate IoT data immediately as IoT data collected according to network environment (interference, interference, etc.) are frequently missed or error occurs. In order to minimize mistakes in IoT data collected in an edge network environment, this paper proposes a management technique that ensures the reliability of IoT data by randomly generating signature values of IoT data and allocating only Security Information (SI) values to IoT data in bit form. The proposed technique binds IoT data into a blockchain by applying multiple hash chains to asymmetrically link and process data collected from IoT devices. In this case, the blockchainized IoT data uses a probability function to which a weight is applied according to a correlation index based on deep learning. In addition, the proposed technique can expand and operate grouped IoT data into an n-layer structure to lower the integrity and processing cost of IoT data.

Implementation of a MTM-based secure OTP Generator for IoT Devices (IoT 디바이스를 위한 MTM 기반의 안전한 OTP 생성기 구현)

  • Kim, Young-Sae;Han, Jin-Hee;Jeon, Yong-Sung;Kim, Jung-Nyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.199-206
    • /
    • 2015
  • In this paper, we present the implementation of a secure OTP(One Time Password) generator for IoT(Internet of Things) devices. Basically, MTM(Mobile Trusted Module) is used and expanded considering secure IoT services. We combine the MTM architecture with a new hardware-based OTP generation engine. The new architecture is more secure, offering not only the security of devices but also that of the OTP service. We have implemented and verified the MTM-based OTP generator on a real mobile platform embedded with the MTM chip. The proposed method can be used as a solution for enhancing security of IoT devices and services.

An ID-Based Remote User Authentication Scheme in IoT (사물인터넷에서 ID기반 원격 사용자 인증 방식)

  • Park, KiSung;Lee, SungYup;Park, YoHan;Park, YoungHo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1483-1491
    • /
    • 2015
  • Applications of Internet of Things (IoT) supply various conveniences, however unsolved security problems such as personal privacy, data manipulation cause harm to persons, even nations and an limit the applicable areas of Internet of IoT technology. Therefore, study about secure and efficient security system on IoT are required. This paper proposes ID-based remote user authentication scheme in IoT environments. Proposed scheme provides untraceability of users by using different pseudonym identities in every session and reduces the number of variables. Our proposal is secure against inside attack, smart card loss attack, user impersonation attack, server masquerading attack, online/offline password guessing attack, and so on. Therefore, this can be applied to the lightweight IoT environments.

Design of a physical layer of IEEE 802.15.4q TASK for IoT (IoT를 위한 IEEE 802.15.4q 기반 TASK 물리 계층 설계)

  • Kim, Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2020
  • IoT has been consistently used in various fields such as smart home, wearables, and healthcare. Since IoT devices are small terminals, relatively simple wireless communication protocols such as IEEE 802.15.4 and ISO 18000 series are used. In this paper, we designed the 802.15.4q 2.4 GHz TASK physical layer. Physical protocol data unit of TASK supports bit-level interleaving and shortened BCH encoding. It is spread by unique ternary sequences. There are four spreading factors to choose the data rate according to the communication channel environment. The TASK physical layer was designed using verilog-HDL and verified through the loop-back test of the transceiver. The designed TASK physical layer was implemented in a fpga and tested using MAXIM RFICs. The PER was about 0% at 10 dB SNR. It is expected to be used in small, low power IoT applications.

Analyses of Requirement of Security and Threat of IoT Application (사물 인터넷 통신망의 적용에 따른 보안 위협과 보안 요구사항 분석)

  • Kim, Jung Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1025-1026
    • /
    • 2015
  • With the development of sensor, wireless mobile communication, embedded system and cloud computing, the technologies of Internet of Things have been widely used in real word. Connecting wireless sensor networks with traditional communication networks or Internet, IoT gateway plays an important role in IoT applications. It facilitates the integration of wireless sensor networks and mobile communication networks or Internet. The IoT gateway is a key component in IoT application systems. But It has lot of security issues. We analyzed the issues of security and privacy.

  • PDF

Cognitive Radio Anti-Jamming Scheme for Security Provisioning IoT Communications

  • Kim, Sungwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4177-4190
    • /
    • 2015
  • Current research on Internet of Things (IoT) has primarily addressed the means to enhancing smart resource allocation, automatic network operation, and secure service provisioning. In particular, providing satisfactory security service in IoT systems is indispensable to its mission critical applications. However, limited resources prevent full security coverage at all times. Therefore, these limited resources must be deployed intelligently by considering differences in priorities of targets that require security coverage. In this study, we have developed a new application of Cognitive Radio (CR) technology for IoT systems and provide an appropriate security solution that will enable IoT to be more affordable and applicable than it is currently. To resolve the security-related resource allocation problem, game theory is a suitable and effective tool. Based on the Blotto game model, we propose a new strategic power allocation scheme to ensure secure CR communications. A simulation shows that our proposed scheme can effectively respond to current system conditions and perform more effectively than other existing schemes in dynamically changeable IoT environments.

Machine learning-based Multi-modal Sensing IoT Platform Resource Management (머신러닝 기반 멀티모달 센싱 IoT 플랫폼 리소스 관리 지원)

  • Lee, Seongchan;Sung, Nakmyoung;Lee, Seokjun;Jun, Jaeseok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.93-100
    • /
    • 2022
  • In this paper, we propose a machine learning-based method for supporting resource management of IoT software platforms in a multi-modal sensing scenario. We assume that an IoT device installed with a oneM2M-compatible software platform is connected with various sensors such as PIR, sound, dust, ambient light, ultrasonic, accelerometer, through different embedded system interfaces such as general purpose input output (GPIO), I2C, SPI, USB. Based on a collected dataset including CPU usage and user-defined priority, a machine learning model is trained to estimate the level of nice value required to adjust according to the resource usage patterns. The proposed method is validated by comparing with a rule-based control strategy, showing its practical capability in a multi-modal sensing scenario of IoT devices.

Asynchronous Sensing Data Aggregation and Processing Mechanism for Internet of Things Environment (사물 인터넷 환경에서 비동기 센싱 데이터 수집 및 처리 메커니즘)

  • Kang, Yunhee;Ko, Wan-Ki
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.11
    • /
    • pp.403-408
    • /
    • 2014
  • In the Internet of Things(IoT) era, many of the things or objects that enclose our environments are able to associate with those things on the Internet. To construct IoT systems, it needs to consider a component for acquiring and aggregating of sensory data via things with sensors and instruments, which is connected by diverse networks, in IoT environment. An IoT system is intrinsically distributed in a variety of ways. In addition, to manage an IoT system efficiently, interoperability is needed to meet requirements while the IoT system is designed to deliver data among its applications. In this paper, a reference architecture based on asynchronous messaging is defined and used for designing an IoT system. To apply the architecture, we discuss how to manage data streams with real-time characteristics and make a prototype based on pipe-and-filter to produce and consume them by a pub/sub messaging system NaradaBrokering.

Resource Management Strategies in Fog Computing Environment -A Comprehensive Review

  • Alsadie, Deafallah
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.310-328
    • /
    • 2022
  • Internet of things (IoT) has emerged as the most popular technique that facilitates enhancing humans' quality of life. However, most time sensitive IoT applications require quick response time. So, processing these IoT applications in cloud servers may not be effective. Therefore, fog computing has emerged as a promising solution that addresses the problem of managing large data bandwidth requirements of devices and quick response time. This technology has resulted in processing a large amount of data near the data source compared to the cloud. However, efficient management of computing resources involving balancing workload, allocating resources, provisioning resources, and scheduling tasks is one primary consideration for effective computing-based solutions, specifically for time-sensitive applications. This paper provides a comprehensive review of the source management strategies considering resource limitations, heterogeneity, unpredicted traffic in the fog computing environment. It presents recent developments in the resource management field of the fog computing environment. It also presents significant management issues such as resource allocation, resource provisioning, resource scheduling, task offloading, etc. Related studies are compared indifferent mentions to provide promising directions of future research by fellow researchers in the field.

Feasibility of Societal Model for Securing Internet of Things

  • Tsunoda, Hiroshi;Roman, Rodrigo;Lopez, Javier;Keeni, Glenn Mansfield
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3567-3588
    • /
    • 2018
  • In the Internet of Things (IoT) concept, devices communicate autonomously with applications in the Internet. A significant aspect of IoT that makes it stand apart from present-day networked devices and applications is a) the very large number of devices, produced by diverse makers and used by an even more diverse group of users; b) the applications residing and functioning in what were very private sanctums of life e.g. the car, home, and the people themselves. Since these diverse devices require high-level security, an operational model for an IoT system is required, which has built-in security. We have proposed the societal model as a simple operational model. The basic concept of the model is borrowed from human society - there will be infants, the weak and the handicapped who need to be protected by guardians. This natural security mechanism works very well for IoT networks which seem to have inherently weak security mechanisms. In this paper, we discuss the requirements of the societal model and examine its feasibility by doing a proof-of-concept implementation.