• Title/Summary/Keyword: IoT Applications

Search Result 478, Processing Time 0.032 seconds

Design of Fine Dust Monitoring System based on the Internet of Things (사물인터넷 기반 미세먼지 모니터링 시스템 설계 및 구현)

  • Kim, Tae-Yeun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.14-26
    • /
    • 2022
  • Recently, according to the severity of air pollution, interest in air pollution is increasing. The IoT based fine dust monitoring system proposed in this paper allows the measurement and monitoring of fine dust, volatile organic compounds, carbon dioxide, etc., which are the biggest causes affecting the human body among air environmental pollution. The proposed system consisted of a device that measures atmospheric environment information, a server system for storing and analyzing measured information, an integrated monitoring management system for administrators and smart phone applications for users to enable visualization analysis of atmospheric environment information in real time. In addition, the effectiveness of the proposed fine dust monitoring system based on the Internet of Things was verified by using the response speed of the system, the transmission speed of the sensor data, and the measurement error of the sensor. The fine dust monitoring system based on the Internet of Things proposed in this paper is expected to increase user convenience and efficiency of the system by visualizing the air pollution condition after measuring the air environment information with portable fine dust measuring device.

Designing a low-power L1 cache system using aggressive data of frequent reference patterns

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.9-16
    • /
    • 2022
  • Today, with the advent of the 4th industrial revolution, IoT (Internet of Things) systems are advancing rapidly. For this reason, a various application with high-performance and large-capacity are emerging. Therefore, there is a need for low-power and high-performance memory for computing systems with these applications. In this paper, we propose an effective structure for the L1 cache memory, which consumes the most energy in the computing system. The proposed cache system is largely composed of two parts, the L1 main cache and the buffer cache. The main cache is 2 banks, and each bank consists of a 2-way set association. When the L1 cache hits, the data is copied into buffer cache according to the proposed algorithm. According to simulation, the proposed L1 cache system improved the performance of energy delay products by about 65% compared to the existing 4-way set associative cache memory.

In-memory Compression Scheme Based on Incremental Frequent Patterns for Graph Streams (그래프 스트림 처리를 위한 점진적 빈발 패턴 기반 인-메모리 압축 기법)

  • Lee, Hyeon-Byeong;Shin, Bo-Kyoung;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.35-46
    • /
    • 2022
  • Recently, with the development of network technologies, as IoT and social network service applications have been actively used, a lot of graph stream data is being generated. In this paper, we propose a graph compression scheme that considers the stream graph environment by applying graph mining to the existing compression technique, which has been focused on compression rate and runtime. In this paper, we proposed Incremental frequent pattern based compression technique for graph streams. Since the proposed scheme keeps only the latest reference patterns, it increases the storage utilization and improves the query processing time. In order to show the superiority of the proposed scheme, various performance evaluations are performed in terms of compression rate and processing time compared to the existing method. The proposed scheme is faster than existing similar scheme when the number of duplicated data is large.

A Study on Integrity Protection of Edge Computing Application Based on Container Technology (컨테이너 기술을 활용한 엣지 컴퓨팅 환경 어플리케이션 무결성 보호에 대한 연구)

  • Lee, Changhoon;Shin, Youngjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1205-1214
    • /
    • 2021
  • Edge Computing is used as a solution to the cost problem and transmission delay problem caused by network bandwidth consumption that occurs when IoT/CPS devices are integrated into the cloud by performing artificial intelligence (AI) in an environment close to the data source. Since edge computing runs on devices that provide high-performance computation and network connectivity located in the real world, it is necessary to consider application integrity so that it is not exploited by cyber terrorism that can cause human and material damage. In this paper, we propose a technique to protect the integrity of edge computing applications implemented in a script language that is vulnerable to tampering, such as Python, which is used for implementing artificial intelligence, as container images and then digitally signed. The proposed method is based on the integrity protection technology (Docker Contents Trust) provided by the open source container technology. The Docker Client was modified and used to utilize the whitelist for container signature information so that only containers allowed on edge computing devices can be operated.

MLOps workflow language and platform for time series data anomaly detection

  • Sohn, Jung-Mo;Kim, Su-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.19-27
    • /
    • 2022
  • In this study, we propose a language and platform to describe and manage the MLOps(Machine Learning Operations) workflow for time series data anomaly detection. Time series data is collected in many fields, such as IoT sensors, system performance indicators, and user access. In addition, it is used in many applications such as system monitoring and anomaly detection. In order to perform prediction and anomaly detection of time series data, the MLOps platform that can quickly and flexibly apply the analyzed model to the production environment is required. Thus, we developed Python-based AI/ML Modeling Language (AMML) to easily configure and execute MLOps workflows. Python is widely used in data analysis. The proposed MLOps platform can extract and preprocess time series data from various data sources (R-DB, NoSql DB, Log File, etc.) using AMML and predict it through a deep learning model. To verify the applicability of AMML, the workflow for generating a transformer oil temperature prediction deep learning model was configured with AMML and it was confirmed that the training was performed normally.

Digital Filter based on Expended Convolution Mask to Reconstruct Impulse Noise Image (임펄스 잡음 영상을 복원하기 위한 확장된 컨벌루션 마스크 기반의 디지털 필터)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.431-433
    • /
    • 2022
  • With the development of IoT technology, various technologies such as artificial intelligence and automation are being grafted into industrial sites, and accordingly, the importance of data processing is increasing. Image denoising is one of the basic processes of image processing, and is used as a preprocessing step in many applications. Various studies have been conducted to remove noise, but various problems arise in the process of noise removal, such as image detail preservation, texture restoration, and special noise removal. In this paper, we propose a digital filter using an extended convolutional mask to preserve image detail during the impulse denoising process. The proposed algorithm uses an extended convolution mask as a filtering mask, and obtains the final output by switching the extension level according to the noise level. Simulation was conducted to evaluate the performance of the proposed algorithm, and the performance was analyzed compared to the existing method.

  • PDF

Design of Food Waste Trading E-Commerce Service with IoT-based Capacity Information Collection (사물인터넷 기반의 용량 정보 수집을 통한 음식물 쓰레기 전자상거래 서비스의 설계)

  • Wahyutama, Aria Bisma;Hwang, Mintae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.112-114
    • /
    • 2022
  • This paper proposes an E-Commerce service that supports large quantities of food waste sales generated by collective residences, including apartments, to consumers in urban areas, such as livestock farmers, through online transactions. Unlike general E-Commerce, the proposed service uses a smart food waste bin equipped with an IoT-based sensor and communication module to automatically collect the location information of each apartment and the amount of food waste to be displayed in a specialized E-Commerce platform. The key of this system is to provide information and sell it to consumers. The smart food waste bin periodically delivers its current capacity and location using a weight sensor, GPS sensor and LoRa communication module to a cloud-based database to be used in web or mobile applications. The proposed E-Commerce service is expected to help resolve the food waste disposal problem and revitalize the local economy by linking with a service that delivers food waste from each apartment to a nearby location where the buyer is located.

  • PDF

Development of Brain-machine Interface for MindPong using Internet of Things (마인드 퐁 제어를 위한 사물인터넷을 이용하는 뇌-기계 인터페이스 개발)

  • Hoon-Hee Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.17-22
    • /
    • 2023
  • Brain-Machine Interfaces(BMI) are interfaces that control machines by decoding brainwaves, which are electrical signals generated from neural activities. Although BMIs can be applied in various fields, their widespread usage is hindered by the low portability of the hardware required for brainwave measurement and decoding. To address this issue, previous research proposed a brain-machine interface system based on the Internet of Things (IoT) using cloud computing. In this study, we developed and tested an application that uses brainwaves to control the Pong game, demonstrating the real-time usability of the system. The results showed that users of the proposed BMI achieved scores comparable to optimal control artificial intelligence in real-time Pong game matches. Thus, this research suggests that IoT-based brain-machine interfaces can be utilized in a variety of real-time applications in everyday life.

A Study on the Strategy of IoT Industry Development in the 4th Industrial Revolution: Focusing on the direction of business model innovation (4차 산업혁명 시대의 사물인터넷 산업 발전전략에 관한 연구: 기업측면의 비즈니스 모델혁신 방향을 중심으로)

  • Joeng, Min Eui;Yu, Song-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.57-75
    • /
    • 2019
  • In this paper, we conducted a study focusing on the innovation direction of the documentary model on the Internet of Things industry, which is the most actively industrialized among the core technologies of the 4th Industrial Revolution. Policy, economic, social, and technical issues were derived using PEST analysis for global trend analysis. It also presented future prospects for the Internet of Things industry of ICT-related global research institutes such as Gartner and International Data Corporation. Global research institutes predicted that competition in network technologies will be an issue for industrial Internet (IIoST) and IoT (Internet of Things) based on infrastructure and platforms. As a result of the PEST analysis, developed countries are pushing policies to respond to the fourth industrial revolution through cooperation of private (business/ research institutes) led by the government. It was also in the process of expanding related R&D budgets and establishing related policies in South Korea. On the economic side, the growth tax of the related industries (based on the aggregate value of the market) and the performance of the entity were reviewed. The growth of industries related to the fourth industrial revolution in advanced countries overseas was found to be faster than other industries, while in Korea, the growth of the "technical hardware and equipment" and "communication service" sectors was relatively low among industries related to the fourth industrial revolution. On the social side, it is expected to cause enormous ripple effects across society, largely due to changes in technology and industrial structure, changes in employment structure, changes in job volume, etc. On the technical side, changes were taking place in each industry, representing the health and medical sectors and manufacturing sectors, which were rapidly changing as they merged with the technology of the Fourth Industrial Revolution. In this paper, various management methodologies for innovation of existing business model were reviewed to cope with rapidly changing industrial environment due to the fourth industrial revolution. In addition, four criteria were established to select a management model to cope with the new business environment: 'Applicability', 'Agility', 'Diversity' and 'Connectivity'. The expert survey results in an AHP analysis showing that Business Model Canvas is best suited for business model innovation methodology. The results showed very high importance, 42.5 percent in terms of "Applicability", 48.1 percent in terms of "Agility", 47.6 percent in terms of "diversity" and 42.9 percent in terms of "connectivity." Thus, it was selected as a model that could be diversely applied according to the industrial ecology and paradigm shift. Business Model Canvas is a relatively recent management strategy that identifies the value of a business model through a nine-block approach as a methodology for business model innovation. It identifies the value of a business model through nine block approaches and covers the four key areas of business: customer, order, infrastructure, and business feasibility analysis. In the paper, the expansion and application direction of the nine blocks were presented from the perspective of the IoT company (ICT). In conclusion, the discussion of which Business Model Canvas models will be applied in the ICT convergence industry is described. Based on the nine blocks, if appropriate applications are carried out to suit the characteristics of the target company, various applications are possible, such as integration and removal of five blocks, seven blocks and so on, and segmentation of blocks that fit the characteristics. Future research needs to develop customized business innovation methodologies for Internet of Things companies, or those that are performing Internet-based services. In addition, in this study, the Business Model Canvas model was derived from expert opinion as a useful tool for innovation. For the expansion and demonstration of the research, a study on the usability of presenting detailed implementation strategies, such as various model application cases and application models for actual companies, is needed.

Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

  • Sun, Guolin;Mareri, Bruce;Liu, Guisong;Fang, Xiufen;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4717-4737
    • /
    • 2017
  • Today, smart grids, smart homes, smart water networks, and intelligent transportation, are infrastructure systems that connect our world more than we ever thought possible and are associated with a single concept, the Internet of Things (IoT). The number of devices connected to the IoT and hence the number of traffic flow increases continuously, as well as the emergence of new applications. Although cutting-edge hardware technology can be employed to achieve a fast implementation to handle this huge data streams, there will always be a limit on size of traffic supported by a given architecture. However, recent cloud-based big data technologies fortunately offer an ideal environment to handle this issue. Moreover, the ever-increasing high volume of traffic created on demand presents great challenges for flow management. As a solution, flow aggregation decreases the number of flows needed to be processed by the network. The previous works in the literature prove that most of aggregation strategies designed for smart grids aim at optimizing system operation performance. They consider a common identifier to aggregate traffic on each device, having its independent static aggregation policy. In this paper, we propose a dynamic approach to aggregate flows based on traffic characteristics and device preferences. Our algorithm runs on a big data platform to provide an end-to-end network visibility of flows, which performs high-speed and high-volume computations to identify the clusters of similar flows and aggregate massive number of mice flows into a few meta-flows. Compared with existing solutions, our approach dynamically aggregates large number of such small flows into fewer flows, based on traffic characteristics and access node preferences. Using this approach, we alleviate the problem of processing a large amount of micro flows, and also significantly improve the accuracy of meeting the access node QoS demands. We conducted experiments, using a dataset of up to 100,000 flows, and studied the performance of our algorithm analytically. The experimental results are presented to show the promising effectiveness and scalability of our proposed approach.