• Title/Summary/Keyword: IoT Applications

Search Result 478, Processing Time 0.032 seconds

On the Need for Efficient Load Balancing in Large-scale RPL Networks with Multi-Sink Topologies

  • Abdullah, Maram;Alsukayti, Ibrahim;Alreshoodi, Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.212-218
    • /
    • 2021
  • Low-power and Lossy Networks (LLNs) have become the common network infrastructure for a wide scope of Internet of Things (IoT) applications. For efficient routing in LLNs, IETF provides a standard solution, namely the IPv6 Routing Protocol for LLNs (RPL). It enables effective interconnectivity with IP networks and flexibly can meet the different application requirements of IoT deployments. However, it still suffers from different open issues, particularly in large-scale setups. These include the node unreachability problem which leads to increasing routing losses at RPL sink nodes. It is a result of the event of memory overflow at LLNs devices due to their limited hardware capabilities. Although this can be alleviated by the establishment of multi-sink topologies, RPL still lacks the support for effective load balancing among multiple sinks. In this paper, we address the need for an efficient multi-sink load balancing solution to enhance the performance of PRL in large-scale scenarios and alleviate the node unreachability problem. We propose a new RPL objective function, Multi-Sink Load Balancing Objective Function (MSLBOF), and introduce the Memory Utilization metrics. MSLBOF enables each RPL node to perform optimal sink selection in a way that insure better memory utilization and effective load balancing. Evaluation results demonstrate the efficiency of MSLBOF in decreasing packet loss and enhancing network stability, compared to MRHOF in standard RPL.

IoT based Wearable Smart Safety Equipment using Image Processing (영상 처리를 이용한 IoT 기반 웨어러블 스마트 안전장비)

  • Hong, Hyungi;Kim, Sang Yul;Park, Jae Wan;Gil, Hyun Bin;Chung, Mokdong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.167-175
    • /
    • 2022
  • With the recent expansion of electric kickboards and bicycle sharing services, more and more people use them. In addition, the rapid growth of the delivery business due to the COVID-19 has significantly increased the use of two-wheeled vehicles and personal mobility. As the accident rate increases, the rule related to the two-wheeled vehicles is changed to 'mandatory helmets for kickboards and single-person transportation' and was revised to prevent boarding itself without driver's license. In this paper, we propose a wearable smart safety equipment, called SafetyHelmet, that can keep helmet-wearing duty and lower the accident rate with the communication between helmets and mobile devices. To make this function available, we propose a safe driving assistance function by notifying the driver when an object that interferes with driving such as persons or other vehicles are detected by applying the YOLO v5 object detection algorithm. Therefore it is intended to provide a safer driving assistance by reducing the failure rate to identify dangers while driving single-person transportation.

A Novel Duty Cycle Based Cross Layer Model for Energy Efficient Routing in IWSN Based IoT Application

  • Singh, Ghanshyam;Joshi, Pallavi;Raghuvanshi, Ajay Singh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1849-1876
    • /
    • 2022
  • Wireless Sensor Network (WSN) is considered as an integral part of the Internet of Things (IoT) for collecting real-time data from the site having many applications in industry 4.0 and smart cities. The task of nodes is to sense the environment and send the relevant information over the internet. Though this task seems very straightforward but it is vulnerable to certain issues like energy consumption, delay, throughput, etc. To efficiently address these issues, this work develops a cross-layer model for the optimization between MAC and the Network layer of the OSI model for WSN. A high value of duty cycle for nodes is selected to control the delay and further enhances data transmission reliability. A node measurement prediction system based on the Kalman filter has been introduced, which uses the constraint based on covariance value to decide the scheduling scheme of the nodes. The concept of duty cycle for node scheduling is employed with a greedy data forwarding scheme. The proposed Duty Cycle-based Greedy Routing (DCGR) scheme aims to minimize the hop count, thereby mitigating the energy consumption rate. The proposed algorithm is tested using a real-world wastewater treatment dataset. The proposed method marks an 87.5% increase in the energy efficiency and reduction in the network latency by 61% when validated with other similar pre-existing schemes.

Optimal Implementation of Lightweight Block Cipher PIPO on CUDA GPGPU (CUDA GPGPU 상에서 경량 블록 암호 PIPO의 최적 구현)

  • Kim, Hyun-Jun;Eum, Si-Woo;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1035-1043
    • /
    • 2022
  • With the spread of the Internet of Things (IoT), cloud computing, and big data, the need for high-speed encryption for applications is emerging. GPU optimization can be used to validate cryptographic analysis results or reduced versions theoretically obtained by the GPU in a reasonable time. In this paper, PIPO lightweight encryption implemented in various environments was implemented on GPU. Optimally implemented considering the brute force attack on PIPO. In particular, the optimization implementation applying the bit slicing technique and the GPU elements were used as much as possible. As a result, the implementation of the proposed method showed a throughput of about 19.5 billion per second in the RTX 3060 environment, achieving a throughput of about 122 times higher than that of the previous study.

Edge Detection based on Contrast Analysis in Low Light Level Environment (저조도 환경에서 명암도 분석 기반의 에지 검출)

  • Park, Hwa-Jung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.437-440
    • /
    • 2022
  • In modern society, the use of the image processing field is increasing rapidly due to the 4th industrial revolution and the development of IoT technology. In particular, edge detection is widely used in various fields as an essential preprocessing process in image processing applications such as image classification and object detection. Conventional methods for detecting an edge include a Sobel edge detection filter, a Roberts edge detection filter, a Prewitt edge detection filter, Laplacian of Gaussian (LoG), and the like. However, existing methods have the disadvantage of showing somewhat insufficient performance of edge detection characteristics in a low-light level environment with low contrast. Therefore, this paper proposes an edge detection algorithm based on contrast analysis to increase edge detection characteristics even in low-light level environments.

  • PDF

Grant-Free Random Access in Multicell Massive MIMO Systems with Mixed-Type Devices: Backoff Mechanism Optimizations under Delay Constraints

  • Yingying, Fang;Qi, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.185-201
    • /
    • 2023
  • Grant-free random access (GFRA) can reduce the access delay and signaling cost, and satisfy the short transmission packet and strict delay constraints requirement in internet of things (IoT). IoT is a major trend in the future, which is characterized by the variety of applications and devices. However, most existing studies on GFRA only consider a single type of device and omit the effect of access delay. In this paper, we study GFRA in multicell massive multipleinput multiple-output (MIMO) systems where different types of devices with various configurations and requirements co-exist. By introducing the backoff mechanism, each device is randomly activated according to the backoff parameter, and active devices randomly select an orthogonal pilot sequence from a predefined pilot pool. An analytical approximation of the average spectral efficiency for each type of device is derived. Based on it, we obtain the optimal backoff parameter for each type of devices under their delay constraints. It is found that the optimal backoff parameters are closely related to the device number and delay constraint. In general, devices that have larger quantity should have more backoff time before they are allowed to access. However, as the delay constraint become stricter, the required backoff time reduces gradually, and the device with larger quantity may have less backoff time than that with smaller quantity when its delay constraint is extremely strict. When the pilot length is short, the effect of delay constraints mentioned above works more obviously.

Hyperparameter optimization for Lightweight and Resource-Efficient Deep Learning Model in Human Activity Recognition using Short-range mmWave Radar (mmWave 레이더 기반 사람 행동 인식 딥러닝 모델의 경량화와 자원 효율성을 위한 하이퍼파라미터 최적화 기법)

  • Jiheon Kang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.319-325
    • /
    • 2023
  • In this study, we proposed a method for hyperparameter optimization in the building and training of a deep learning model designed to process point cloud data collected by a millimeter-wave radar system. The primary aim of this study is to facilitate the deployment of a baseline model in resource-constrained IoT devices. We evaluated a RadHAR baseline deep learning model trained on a public dataset composed of point clouds representing five distinct human activities. Additionally, we introduced a coarse-to-fine hyperparameter optimization procedure, showing substantial potential to enhance model efficiency without compromising predictive performance. Experimental results show the feasibility of significantly reducing model size without adversely impacting performance. Specifically, the optimized model demonstrated a 3.3% improvement in classification accuracy despite a 16.8% reduction in number of parameters compared th the baseline model. In conclusion, this research offers valuable insights for the development of deep learning models for resource-constrained IoT devices, underscoring the potential of hyperparameter optimization and model size reduction strategies. This work contributes to enhancing the practicality and usability of deep learning models in real-world environments, where high levels of accuracy and efficiency in data processing and classification tasks are required.

A temperature sensor with low standard deviation with generating reference voltage for use in IoT applications (IoT 어플리케이션에서 활용하는 참조 전압을 같이 생성할 수 있는 표준 편차가 낮은 온도 센서)

  • Juwon Oh;Younggun Pu;Yeonjae Jung;Kangyoon Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.2
    • /
    • pp.10-14
    • /
    • 2024
  • This paper presents a circuit design aimed at generating the required reference voltage and temperature sensor voltage in conjunction with an ADC, utilizing the current generated by temperature characteristics of BJT components for sensor data conversion. Additionally, two control methods are introduced to reduce the standard deviation of the circuit, resulting in over a ten-fold decrease in standard deviation. The proposed circuit occupies an area of 0.057mm2 and was implemented using 55nm RF process.

Development and Study of Digital Literacy Indicators(Checklist) for Micro Business Owners for Continuous Digital Transformation: Focusing on the Tertiary Industry (지속적인 디지털 전환을 위한 소상공인 디지털 리터러시 측정지표 개발 연구: 3차 산업(숙박 및 음식점업, 도·소매업, 서비스업)을 중심으로)

  • Jungmoon Choi;Junghoon Lee;Jiwon Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.1
    • /
    • pp.81-95
    • /
    • 2023
  • As the DT of micro businesses emerges as an important task, the government is also promoting support projects such as policy establishment and micro business education. This study aims to develop a new index (checklist) that can objectively measure the level of digital literacy required for DT in the tertiary industry, which accounts for the largest share of micro business owners. In this study, indicators were derived through review of existing studies and FGI, and the validity and reliability of Likert 5 were measured for decision makers in the tertiary industry. In the field of digital literacy for micro business owners, a total of 22 indicators were developed, largely composed of basic technology environment competency, information utilization competency, information dissemination and production capability, and mind recognition capability. This study has academic significance in that it can contribute to accurately understanding the digital capabilities of micro business owners by developing a digital literacy index for micro business owners, a specific group lacking in research.

A Study on the Service Improvement Strategies by Enterprise through the Analysis of Customer Response Reviews in Smart Home Applications : Based on the Classification of Functional Elements and Design Elements of smart Home Usability Values (스마트 홈 어플리케이션의 고객반응리뷰분석을 통한 기업별 서비스개선전략에 대한 연구 : 스마트 홈 사용성 가치의 기능적요소와 디자인적 요소 분류를 바탕으로)

  • Heo, Ji Yeon;Kim, Min Ji;Cha, Kyung Jin
    • Journal of Information Technology Services
    • /
    • v.19 no.4
    • /
    • pp.85-107
    • /
    • 2020
  • The Internet of Things market, a technology that connects the Internet to various things, is growing day by day. Besides, various smart home services using IoT and AI (Artificial Intelligence) are being launched in homes. Related to this, existing smart home-related studies focus primarily on ICT technology, not on what service improvements should be made in customer positions. In this study, we will use smart home application customer review data to classify functional and design elements of smart home usability value and examine the ways customers think of service improvement. For this, LG Electronics and Samsung Electronics" Smart Home application, the main provider of Smart Home in Korea, customer reviews were crawled to conduct a comparative analysis between them. In this study, the review of IoT home-applications was analyzed to find service improvement insights from customer perspective, and related analysis of text mining, social network analysis and Doc2vec was used to efficiently analyze data equivalent to about 16,000 user reviews. Through this research, we hope that related companies effectively seek ways to improve smart home services that reflect customer needs and are expected to help them establish competitive strategies by identifying weaknesses and strengths among competitors.