• Title/Summary/Keyword: IoT Applications

Search Result 478, Processing Time 0.032 seconds

A Study on the Privacy Paradox in the IoT-based Smart Home Camera Usage Environment: Focusing on a Comparative Study of User Experience (IoT 기반 스마트 홈카메라 이용환경에서의 프라이버시 패러독스 현상에 관한 연구: 사용경험 비교연구를 중심으로)

  • Lyu, JinDan;Kwon, Sundong
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.6
    • /
    • pp.145-161
    • /
    • 2021
  • Recently, as personal information utilization devices such as IoT, artificial intelligence, and wearable devices that focus on the individual have spread, privacy violations are also increasing. However, the privacy paradox of providing personal information to enjoy services while worrying is getting stronger. However, there are still preliminary studies on this. In this study, an intelligent home camera based on IoT technology was selected as a research object, and whether privacy paradox exists in the IoT environment, including smart home camera, was studied. To this end, the effect of perceived usefulness, a benefit factor of smart home camera use, and privacy concern, a risk factor, on intention to use was verified. In addition, it was investigated whether the relationship between privacy concerns and intention to use differs according to the presence or absence of use experience. In order to verify the research model, a survey was conducted with people with and without experience in using smart home cameras, and a total of 298 data samples were used for statistical analysis. As a result of the analysis, it was found that both perceived usefulness and privacy concerns had a positive effect on the intention to use, proving that privacy paradox exists in the IoT-based smart home camera environment. In addition, by analyzing the fact that privacy concerns have different effects on usage intentions depending on the user experience, it was verified that those with experience have a strong privacy paradox and those without experience have a weak privacy paradox. This study is meaningful because it seeks strategic implications to improve service and business performance by understanding the relationship between privacy attitudes and behaviors of IoT service providers, including smart home cameras.

A Novel CNN and GA-Based Algorithm for Intrusion Detection in IoT Devices

  • Ibrahim Darwish;Samih Montser;Mohamed R. Saadi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.55-64
    • /
    • 2023
  • The Internet of Things (IoT) is the combination of the internet and various sensing devices. IoT security has increasingly attracted extensive attention. However, significant losses appears due to malicious attacks. Therefore, intrusion detection, which detects malicious attacks and their behaviors in IoT devices plays a crucial role in IoT security. The intrusion detection system, namely IDS should be executed efficiently by conducting classification and efficient feature extraction techniques. To effectively perform Intrusion detection in IoT applications, a novel method based on a Conventional Neural Network (CNN) for classification and an improved Genetic Algorithm (GA) for extraction is proposed and implemented. Existing issues like failing to detect the few attacks from smaller samples are focused, and hence the proposed novel CNN is applied to detect almost all attacks from small to large samples. For that purpose, the feature selection is essential. Thus, the genetic algorithm is improved to identify the best fitness values to perform accurate feature selection. To evaluate the performance, the NSL-KDDCUP dataset is used, and two datasets such as KDDTEST21 and KDDTEST+ are chosen. The performance and results are compared and analyzed with other existing models. The experimental results show that the proposed algorithm has superior intrusion detection rates to existing models, where the accuracy and true positive rate improve and the false positive rate decrease. In addition, the proposed algorithm indicates better performance on KDDTEST+ than KDDTEST21 because there are few attacks from minor samples in KDDTEST+. Therefore, the results demonstrate that the novel proposed CNN with the improved GA can identify almost every intrusion.

Performance Analysis of BLE System for Wireless IoT Network Design (IoT 무선 네트워크 설계를 위한 BLE 시스템의 성능 분석)

  • Jae-sung Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.481-486
    • /
    • 2022
  • The recent rapid growth of the IoT(Internet of Things) is leading to the spread of low-power wireless technology. A major challenge in designing IoT wireless networks is to achieve coexistence between different wireless technologies that share the 2.4 [GHz] ISM (Industrial Scientific Medical) frequency band. Therefore, there is a need for research on improving the reliability of wireless networks and coexisting operation between wireless networks. In particular, it is necessary to study an interference model and performance for mutual service coexistence in a BLE (Bluetooth Low Energy) wireless network environment, which is expected to be widely used as a connection medium between devices in various industrial fields. In this paper, the co-channel interference model with the IEEE 802.15.4 system is established focusing on the physical layer of the BLE system widely used in residential and industrial wireless applications, and the performance of the BLE wireless communication system is analyzed in the co-channel interference environment. As a result of the analysis, as the distance between the interference source and the BLE system increases in an environment where noise and co-channel interference exist, the amount of co-channel interference decreases and the error rate performance of the BLE system improves.

An Implementation of Single Stack Multi-threading for Small Embedded Systems

  • Kim, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • In small embedded systems including IoT devices, memory size is very small and it is important to reduce memory amount for execution of application programs. For multi-threaded applications, stack may consume a large amount of memory because each thread has its own stack of sufficiently large size for worst case. This paper presents an implementation of single stack multi-threading, called SSThread (Single Stack Thread), by sharing a stack for all threads to reduce stack memory size. By using SSThread, multi-threaded applications can be programmed based on normal C language environment and there is no requirement of transporting multi-threading operating systems. It consists of several library functions and various C macro definitions. Even though some functional restrictions in comparison to operating systems supporting complete multi-thread functionalities, it is very useful for small embedded systems with tiny memory size and it is simple to setup programming environment for multi-thread applications.

Reaching Byzantine Agreement underlying VANET

  • Wang, Shu-Ching;Lin, Ya-Jung;Yan, Kuo-Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3351-3368
    • /
    • 2019
  • The Internet of Things (IoT) enables machines and devices in a global network to connect and provide applications. The Vehicular Ad-hoc NETwork (VANET) allows vehicles in the network to communicate with each other as an application of the IoT. The safety and comfort of passengers can be improved through VANET related applications. In order to be able to provide related applications, there must be a reliable VANET topology. As a result of the Byzantine agreement (BA), fault tolerance can be solved in VANET. In order to improve the reliability of the system, even if some components in the system are damaged, a protocol is needed to assist the system to perform normally. Therefore, the BA problem in VANET with multiple impairments is revisited in this research. The proposed protocol allows all normal processing elements (PEs) to reach agreement using the least amount of information exchange. Moreover, the proposed protocol can tolerate the largest number of damaged PEs in VANET.

Sewing-enabled electric button for smart fabric

  • Lee, Kang-Ho;Lee, Dongkyu;Lee, Yong-Goo;Kwon, Ohwon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.67-70
    • /
    • 2021
  • A new button-shaped electrical device was developed for a smart fabric. This electric button can be sewn anywhere on the garment, similar to a traditional button fastener. t not only performs a decorative function but also makes the fabric suitable for use in Internet of Things (IoT) applications. It has metallic through-holes such that it can be fastened onto a fabric by conductive sewing threads. When threaded through metallic holes, the button can communicate with the external device by transmitting and receiving data. In addition, it adds specific functions by stacking a detachable application layer on the base layer. It is robust to frequent washing, and thus has excellent repeatability for use as an IoT device. The feasibility of the electric button was successfully demonstrated by its ability to identify the physical activities of walking and running, monitoring ambient temperature, and turning on LED lights.

USN metadata management agent using IoT-based EMRA

  • Lee, Jong-Sub
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.96-103
    • /
    • 2022
  • In this paper, we define EMRA-based USN metadata to describe sensor device, sensor node, and sensor network information at the application level. And the proposed method for effectively storing and retrieving USN metadata based on EMRA uses agent technology. As the sensor metadata proposed in this paper is based on SensorML, interoperability can be maintained in the USN environment, and the metadata management system can be directly utilized for metadata management in USN middleware or applications.

Design and Implementation of a Low Power Chip with Robust Physical Unclonable Functions on Sensor Systems (센서 시스템에서의 고신뢰 물리적 복제방지 기능의 저전력 칩 설계 및 구현)

  • Choi, Jae-min;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.59-63
    • /
    • 2018
  • Among Internet of things (IoT) applications, the most demanding requirements for the widespread realization of many IoT visions are security and low power. In terms of security, IoT applications include tasks that are rarely addressed before such as secure computation, trusted sensing, and communication, privacy, and so on. These tasks ask for new and better techniques for the protection of data, software, and hardware. An integral part of hardware cryptographic primitives are secret keys and unique IDs. Physical Unclonable Functions(PUF) are a unique class of circuits that leverage the inherent variations in manufacturing process to create unique, unclonable IDs and secret keys. In this paper, we propose a low power Arbiter PUF circuit with low error rate and high reliability compared with conventional arbiter PUFs. The proposed PUF utilizes a power gating structure to save the power consumption in sleep mode, and uses a razor flip-flop to increase reliability. PUF has been designed and implemented using a FPGA and a ASIC chip (a 0.35 um technology). Experimental results show that our proposed PUF solves the metastability problem and reduce the power consumption of PUF compared to the conventional Arbiter PUF. It is expected that the proposed PUF can be used in systems required low power consumption and high reliability such as low power encryption processors and low power biomedical systems.

The Development of Brain Health Care Game Applications to prevent Digital Dementia

  • Cho, Young-Ju;Kim, Hye-Suk;Kim, Jin-Hyuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.51-58
    • /
    • 2016
  • Recently, with various developments made to smart-phones and other digital devices in the IoT environment, modern people tend to pursue comfort in their own lifestyles. These environment has helped us to obtain any information or data in despite of location and time. But it has caused them to be overly reliant on digital devices in doing any kind of daily work, trusting the digital devices more than oneself. As a result of this over reliance, modern people's memorizing and calculating ability have deteriorated critically. This symptom is known as the Digital Dementia. In this paper, we study the phenomenon of digital dementia caused by smart-phones, and we suggest a method of developing "memorize the phone number" game applications in IoT environment to the problem of digital dementia. Test results show that, through the use of application, not only the users were able to have fun memorizing the numbers, but also, to show improvement in their memorizing ability. Thus, we expect that the application suggested above will help in preventing digital dementia and maintain brain health.

Key-based dynamic S-Box approach for PRESENT lightweight block cipher

  • Yogaraja CA;Sheela Shobana Rani K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3398-3415
    • /
    • 2023
  • Internet-of-Things (IoT) is an emerging technology that interconnects millions of small devices to enable communication between the devices. It is heavily deployed across small scale to large scale industries because of its wide range of applications. These devices are very capable of transferring data over the internet including critical data in few applications. Such data is exposed to various security threats and thereby raises privacy-related concerns. Even devices can be compromised by the attacker. Modern cryptographic algorithms running on traditional machines provide authentication, confidentiality, integrity, and non-repudiation in an easy manner. IoT devices have numerous constraints related to memory, storage, processors, operating systems and power. Researchers have proposed several hardware and software implementations for addressing security attacks in lightweight encryption mechanism. Several works have made on lightweight block ciphers for improving the confidentiality by means of providing security level against cryptanalysis techniques. With the advances in the cipher breaking techniques, it is important to increase the security level to much higher. This paper, focuses on securing the critical data that is being transmitted over the internet by PRESENT using key-based dynamic S-Box. Security analysis of the proposed algorithm against other lightweight block cipher shows a significant improvement against linear and differential attacks, biclique attack and avalanche effect. A novel key-based dynamic S-Box approach for PRESENT strongly withstands cryptanalytic attacks in the IoT Network.