• Title/Summary/Keyword: IoT 엣지

Search Result 54, Processing Time 0.027 seconds

The Design of Smart Factory System using AI Edge Device (AI 엣지 디바이스를 이용한 스마트 팩토리 시스템 설계)

  • Han, Seong-Il;Lee, Dae-Sik;Han, Ji-Hwan;Shin, Han Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.257-270
    • /
    • 2022
  • In this paper, we design a smart factory risk improvement system and risk improvement method using AI edge devices. The smart factory risk improvement system collects, analyzes, prevents, and promptly responds to the worker's work performance process in the smart factory using AI edge devices, and can reduce the risk that may occur during work with improving the defect rate when workers perfom jobs. In particular, based on worker image information, worker biometric information, equipment operation information, and quality information of manufactured products, it is possible to set an abnormal risk condition, and it is possible to improve the risk so that the work is efficient and for the accurate performance. In addition, all data collected from cameras and IoT sensors inside the smart factory are processed by the AI edge device instead of all data being sent to the cloud, and only necessary data can be transmitted to the cloud, so the processing speed is fast and it has the advantage that security problems are low. Additionally, the use of AI edge devices has the advantage of reducing of data communication costs and the costs of data transmission bandwidth acquisition due to decrease of the amount of data transmission to the cloud.

Development of Autonomous Cable Monitoring System of Bridge based on IoT and Domain Knowledge (IoT 및 도메인 지식 기반 교량 케이블 모니터링 자동화 시스템 구축 연구)

  • Jiyoung Min;Young-Soo Park;Tae Rim Park;Yoonseob Kil;Seung-Seop Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.66-73
    • /
    • 2024
  • Stay-cable is one of the most important load carrying members in cable-stayed bridges. Monitoring structural integrity of stay-cables is crucial for evaluating the structural condition of the cable-stayed bridge. For stay-cables, tension and damping ratio are estimated based on modal properties as a measure of structural integrity. Since the monitoring system continuously measures the vibration for the long-term period, data acquisition systems should be stable and power-efficiency as the hardware system. In addition, massive signals from the data acquisition systems are continuously generated, so that automated analysis system should be indispensable. In order to fulfill these purpose simultaneously, this study presents an autonomous cable monitoring system based on domain-knowledge using IoT for continuous cable monitoring systems of cable-stayed bridges. An IoT system was developed to provide effective and power-efficient data acquisition and on-board processing capability for Edge-computing. Automated peak-picking algorithm using domain knowledge was embedded to the IoT system in order to analyze massive data from continuous monitoring automatically and reliably. To evaluate its operational performance in real fields, the developed autonomous monitoring system has been installed on a cable-stayed bridge in Korea. The operational performance are confirmed and validated by comparing with the existing system in terms of data transmission rates, accuracy and efficiency of tension estimation.

Green Device to Device Task Management Framework by Mobile Edge Computing in IoT Environment (IoT 환경에서 모바일 엣지 컴퓨팅을 통한 디바이스간 타스크 관리 프레임워크)

  • Ko, Kwang-Man;Ranji, Ramtin;Mansoor, Ali;Kim, Soon-Gohn
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.85-87
    • /
    • 2018
  • Motivating by two promising technique of 5G, namely D2D and Edge computing, and the above mentioned problem of the current joint studies, We believe that more study is needed on the benefits of joining these two techniques in a single framework by more precisely taking into account the energy needed to computation, sending data, receiving data and as a result achieving more realistic energy efficiency in 5G cellular networks.

Trends in Ultra Low Power Intelligent Edge Semiconductor Technology (초저전력 엣지 지능형반도체 기술 동향)

  • Oh, K.I.;Kim, S.E.;Bae, Y.H.;Park, S.M.;Lee, J.J.;Kang, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.24-33
    • /
    • 2018
  • In the age of IoT, in which everything is connected to a network, there have been increases in the amount of data traffic, latency, and the risk of personal privacy breaches that conventional cloud computing technology cannot cope with. The idea of edge computing has emerged as a solution to these issues, and furthermore, the concept of ultra-low power edge intelligent semiconductors in which the IoT device itself performs intelligent decisions and processes data has been established. The key elements of this function are an intelligent semiconductor based on artificial intelligence, connectivity for the efficient connection of neurons and synapses, and a large-scale spiking neural network simulation framework for the performance prediction of a neural network. This paper covers the current trends in ultra-low power edge intelligent semiconductors including issues regarding their technology and application.

Design and Implementation of Edge-based Hydroponics Grow Chamber System (엣지(Edge)에 기반한 수경재배 챔버(Chamber)시스템의 설계 및 구현)

  • Lee, Yong-Ju;Park, Hwin Dol;Song, Hyewon;Kim, Jiyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.111-112
    • /
    • 2017
  • IoT(Internet of Thing)기술의 발전으로 다양한 분야에서 라즈베리파이(Raspberry Pi)와 같은 경량시스템으로, 실생활에 유용하게 사용될 수 있는 비전문 시스템에 대한 다양한 형태의 기술이 선보이고 있다. 한 예로, 스마트팜(Smart farm)분야에서는 다양한 온실 형태로 과실류를 재배하고 있으며, 보다 전문적인 챔버(Chamber)형태의 시스템으로는 관엽식물/채소/알뿌리식물/인삼 등 다양한 식물류에서 사용되어 질 수 있다. 이에 본 논문에서는 챔버 시스템 상에 서버와의 연결 없이 정해진 생육 규칙에 따라 자동으로 제어 되는 라즈베리파이 엣지(Edge)에 기반한 챔버 제어 시스템에 대한 연구를 담고 있다.

Task Migration for Load Balancing and Energy Efficiency based on Reinforcement Learning in UAV-Enabled MEC System (UAV 지원 MEC 시스템의 로드 밸런싱과 에너지 효율성을 고려한 강화학습 기반 태스크 마이그레이션)

  • Shin, A Young;Lim, Yujin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.74-77
    • /
    • 2022
  • 최근 사물 인터넷(IoT)의 발전으로 계산 집약적이거나 지연시간에 민감한 태스크가 증가하면서, 모바일 엣지 컴퓨팅 기술이 주목받고 있지만 지상에 고정되어 있는 MEC 서버는 사용자의 요구사항 변화에 따라 서버의 위치를 변경하거나 유연하게 대처할 수 없다. 이 문제를 해결하기 위해 UAV(Unmanned Aerial Vehicle)를 추가로 이용해 엣지 서비스를 제공하는 기법이 연구되고 있다. 그러나 UAV는 지상 MEC와는 달리 배터리 용량이 제한되어 있어 태스크 마이그레이션을 통해 에너지 사용량을 최소화하는 것이 필요하다. 본 논문에서는 MEC 서버들 사이의 로드 밸런싱과 UAV MEC 서버의 에너지 효율성을 최적화하기 위해 강화학습 기법인 Q-learning을 이용한 태스크 마이그레이션 기법을 제안한다. 제안 시스템의 성능을 평가하기 위해 UAV의 개수에 따라 실험을 진행하여 잔여 에너지와 로드 밸런싱 측면에서 성능을 분석한다.

PROFINET-based Data Collection IIoT Device Development Method (PROFINET 기반 데이터 수집을 위한 IIoT 장치 개발 방안)

  • Kim, Seong-Chang;Kim, Jin-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.92-93
    • /
    • 2022
  • As the importance of smart factories is emphasized, the use of industrial Ethernet-based devices is expected to increase to build smart factories. PROFINET is an industrial Ethernet protocol developed by SIEMENS, and a number of smart factories are currently being built as PROFINET-based products. Accordingly, in order to develop and utilize various industrial IoT-based services, an IIoT device capable of collecting various sensor data and information from PROFINET-based manufacturing equipment and transmitting data to an edge computer is required.

  • PDF

Design of Highway Accident Detection and Alarm System Based on Internet of Things Guard Rail (IoT 가드레일 기반의 고속도로 사고감지 및 경보 시스템 설계)

  • Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1500-1505
    • /
    • 2019
  • Currently, as part of the ICT Smart City, the company is building C-ITS(Cooperative-Intelligent Transport Systems) for solving urban traffic problems. In order to realize autonomous driving service with C-ITS, the role of advanced road infrastructure is important. In addition to the study of mid- to long-term C-ITS and autonomous driving services, it is necessary to present more realistic solutions for road traffic safety in the short term. Therefore, in this paper, we propose a highway accident detection alarm system that can detect and analyze traffic flow and risk information, which are essential information of C-ITS, based on IoT guard rail and provide immediate alarm and remote control. Intelligent IoT guard rail is expected to be used as an intelligent advanced road infrastructure that provides data at actual road sites that are required by C-ITS and self-driving services in the long term.

Task Migration in Cooperative Vehicular Edge Computing (협력적인 차량 엣지 컴퓨팅에서의 태스크 마이그레이션)

  • Moon, Sungwon;Lim, Yujin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.12
    • /
    • pp.311-318
    • /
    • 2021
  • With the rapid development of the Internet of Things(IoT) technology recently, multi-access edge computing(MEC) is emerged as a next-generation technology for real-time and high-performance services. High mobility of users between MECs with limited service areas is considered one of the issues in the MEC environment. In this paper, we consider a vehicle edge computing(VEC) environment which has a high mobility, and propose a task migration algorithm to decide whether or not to migrate and where to migrate using DQN, as a reinforcement learning method. The objective of the proposed algorithm is to improve the system throughput while satisfying QoS(Quality of Service) requirements by minimizing the difference between queueing delays in vehicle edge computing servers(VECSs). The results show that compared to other algorithms, the proposed algorithm achieves approximately 14-49% better QoS satisfaction and approximately 14-38% lower service blocking rate.

Model Optimization for Supporting Spiking Neural Networks on FPGA Hardware (FPGA상에서 스파이킹 뉴럴 네트워크 지원을 위한 모델 최적화)

  • Kim, Seoyeon;Yun, Young-Sun;Hong, Jiman;Kim, Bongjae;Lee, Keon Myung;Jung, Jinman
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.70-76
    • /
    • 2022
  • IoT application development using a cloud server causes problems such as data transmission and reception delay, network traffic, and cost for real-time processing support in network connected hardware. To solve this problem, edge cloud-based platforms can use neuromorphic hardware to enable fast data transfer. In this paper, we propose a model optimization method for supporting spiking neural networks on FPGA hardware. We focused on auto-adjusting network model parameters optimized for neuromorphic hardware. The proposed method performs optimization to show higher performance based on user requirements for accuracy. As a result of performance analysis, it satisfies all requirements of accuracy and showed higher performance in terms of expected execution time, unlike the naive method supported by the existing open source framework.