• Title/Summary/Keyword: IoT 엣지

Search Result 54, Processing Time 0.024 seconds

Edge-Centric Metamorphic IoT Device Platform for Efficient On-Demand Hardware Replacement in Large-Scale IoT Applications (대규모 IoT 응용에 효과적인 주문형 하드웨어의 재구성을 위한 엣지 기반 변성적 IoT 디바이스 플랫폼)

  • Moon, Hyeongyun;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1688-1696
    • /
    • 2020
  • The paradigm of Internet-of-things(IoT) systems is changing from a cloud-based system to an edge-based system to solve delays caused by network congestion, server overload and security issues due to data transmission. However, edge-based IoT systems have fatal weaknesses such as lack of performance and flexibility due to various limitations. To improve performance, application-specific hardware can be implemented in the edge device, but performance cannot be improved except for specific applications due to a fixed function. This paper introduces a edge-centric metamorphic IoT(mIoT) platform that can use a variety of hardware through on-demand partial reconfiguration despite the limited hardware resources of the edge device, so we can increase the performance and flexibility of the edge device. According to the experimental results, the edge-centric mIoT platform that executes the reconfiguration algorithm at the edge was able to reduce the number of server accesses by up to 82.2% compared to previous studies in which the reconfiguration algorithm was executed on the server.

IoT Edge Architecture Model to Prevent Blockchain-Based Security Threats (블록체인 기반의 보안 위협을 예방할 수 있는 IoT 엣지 아키텍처 모델)

  • Yoon-Su Jeong
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.77-84
    • /
    • 2024
  • Over the past few years, IoT edges have begun to emerge based on new low-latency communication protocols such as 5G. However, IoT edges, despite their enormous advantages, pose new complementary threats, requiring new security solutions to address them. In this paper, we propose a cloud environment-based IoT edge architecture model that complements IoT systems. The proposed model acts on machine learning to prevent security threats in advance with network traffic data extracted from IoT edge devices. In addition, the proposed model ensures load and security in the access network (edge) by allocating some of the security data at the local node. The proposed model further reduces the load on the access network (edge) and secures the vulnerable part by allocating some functions of data processing and management to the local node among IoT edge environments. The proposed model virtualizes various IoT functions as a name service, and deploys hardware functions and sufficient computational resources to local nodes as needed.

Efficient Data Preprocessing Scheme for Audio Deep Learning in Solar-Powered IoT Edge Computing Environment (태양 에너지 수집형 IoT 엣지 컴퓨팅 환경에서 효율적인 오디오 딥러닝을 위한 데이터 전처리 기법)

  • Yeon-Tae Yoo;Chang-Han Lee;Seok-Mun Heo;Na-Kyung You;Ki-Hoon Kim;Chan-Seo Lee;Dong-Kun Noh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.81-83
    • /
    • 2023
  • 태양 에너지 수집형 IoT 기기는 주기적으로 재충전되는 태양 에너지의 특성상, 에너지 소모를 최소화하기보다는 수집된 에너지를 최대한 유용하게 사용하는 것이 중요하다. 한편, 데이터 기밀성과 프라이버시, 응답속도, 비용 등의 이유로 클라우드가 아닌 데이터 소스 근처에서 머신러닝을 수행하는 엣지 AI에 대한 연구도 활발한데, 그 중 하나는 여러 IoT 장치들이 수집한 오디오 데이터를 활용하여, 다양한 AI 응용들을 IoT 엣지 컴퓨팅 환경에서 제공하는 것이다. 그러나, 이와 관련된 많은 연구에서, IoT 기기들은 에너지의 제약으로 인하여, 엣지 서버(IoT 서버)로의 센싱 데이터 전송만을 수행하고, 데이터 전처리를 포함한 모든 AI 과정은 엣지 서버에서 수행한다. 이 경우, 엣지 서버의 과부하 문제 뿐 아니라, 학습 및 추론에 불필요한 데이터까지도 서버에 그대로 전송되므로 네트워크 과부하 문제도 야기한다. 또한, 이를 해결하고자, 데이터 전처리 과정을 각 IoT 기기에 모두 맡긴다면, 기기의 에너지 부족으로 정전시간이 증가하는 또 다른 문제가 발생한다. 본 논문에서는 각 IoT 기기의 에너지 상태에 따라 데이터 전처리 여부를 결정함으로써, 기기들의 정전시간 증가 문제를 완화시키면서 서버 집중형 엣지 AI 환경의 문제들(엣지 서버 및 네트워크 과부하)을 완화시키고자 한다. 제안기법에서 IoT 장치는 기기가 기본적으로 동작하는 데 필요한 에너지 외의 여분의 에너지 양을 예측하고, 이 여분의 에너지가 있는 경우에만 이를 사용하여 기기에서 전처리 과정, 즉 수집 대상 소리 판별과 잡음 제거 과정을 거친 후 서버에 전송함으로써, IoT기기의 정전시간에 영향을 주지 않으면서, 에너지 적응적으로 데이터 전처리 위치(IoT기기 또는 엣지 서버)를 결정하여 수행한다.

Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review (딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰)

  • Alemayehu, Temesgen Seyoum;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.291-306
    • /
    • 2020
  • Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.

A Study of Virtual IoT System using Edge Computing (엣지 컴퓨팅 기반 가상 IoT 시스템 연구)

  • Kim, Min-A;Seok, Seung-Joon
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.51-62
    • /
    • 2020
  • Open IoT platform that shares communication infrastructure and provides cloud resources can flexibly reduce development period and cost of smart service. In this paper, as an open IoT platform, we propose a virtual IoT system based on edge computing that implements a virtual IoT device for a physical IoT device and allows service developers to interact with the virtual device. A management server in the edge cloud, near the IoT physical device, manages the creation, movement, and removal of virtual IoT devices corresponding to the physical IoT devices. This paper define the operations of the management server, the physical IoT device, and the virtual IoT device, which are major components of the virtual IoT system, and design the communication protocol required to perform the operations. Finally, through simulations, this paper evaluate the performance of the edge computing based virtual IoT system by confirming that each component performs the defined states and operations as designed.

Trends in Edge Computing Technology (엣지 컴퓨팅 기술 동향)

  • Hong, J.H.;Lee, K.C.;Lee, S.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.6
    • /
    • pp.78-87
    • /
    • 2020
  • With the evolution of the Internet of Things (IoT), a computing paradigm shift from cloud to edge computing is rapidly taking place to effectively manage the rapidly increasing volume of data generated by various IoT devices. Edge computing is computing that occurs at or near the physical location of a user or data source. Placing computing services closer to these locations allows users to benefit from faster and more reliable services, and enterprises can take advantage of the flexibility of hybrid cloud computing. This paper describes the concept and main benefits of edge computing and presents the trends and future prospects for edge computing technology.

Tracking Data through Tracking Data Server in Edge Computing (엣지 컴퓨팅 환경에서 추적 데이터 서버를 통한 데이터 추적)

  • Lim, Han-wool;Byoun, Won-jun;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.443-452
    • /
    • 2021
  • One of the key technologies in edge computing is that it always provides services close to the user by moving data between edge servers according to the user's movements. As such, the movement of data between edge servers is frequent. As IoT technology advances and usage areas expand, the data generated also increases, requiring technology to accurately track and process each data to properly manage the data present in the edge computing environment. Currently, cloud systems do not have data disposal technology based on tracking technology for data movement and distribution in their environment, so users cannot see where it is now, whether it is properly removed or not left in the cloud system if users request it to be deleted. In this paper, we propose a tracking data server to create and manage the movement and distribution of data for each edge server and data stored in the central cloud in an edge computing environment.

Design of Personalized Exercise Data Collection System based on Edge Computing

  • Jung, Hyon-Chel;Choi, Duk-Kyu;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.61-68
    • /
    • 2021
  • In this paper, we propose an edge computing-based exercise data collection device that can be provided for exercise rehabilitation services. In the existing cloud computing method, when the number of users increases, the throughput of the data center increases, causing a lot of delay. In this paper, we design and implement a device that measures and estimates the position of keypoints of body joints for movement information collected by a 3D camera from the user's side using edge computing and transmits them to the server. This can build a seamless information collection environment without load on the cloud system. The results of this study can be utilized in a personalized rehabilitation exercise coaching system through IoT and edge computing technologies for various users who want exercise rehabilitation.

A User Authentication Scheme using Blockchain in Smart Grid-based Edge Computing Environments (스마트 그리드 기반 엣지 컴퓨팅 환경에서 블록체인을 이용한 사용자 인증 기법)

  • Hakjun Lee;Youngsook Lee
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.71-79
    • /
    • 2022
  • The smart grid system has emerged to maximize energy efficiency through real-time information exchange between power providers and consumers by combining information technology and power supply systems. The authentication schemes using blockchain in a smart grid system have been proposed, which utilize an edge server's architecture to collect and store electric power-related information and process data between a central cloud server and smart grid-IoT devices. Although authentication schemes are being proposed to enhance security in the smart grid environment, many vulnerabilities are still reported. This paper presents a new mutual authentication scheme to guarantee users' privacy and anonymity in a smart grid based on edge computing using blockchain. In the proposed scheme, we use the smart contract for the key management's efficiency, such as updating and discarding key materials. Finally, we prove that the proposed scheme not only securely establishes a session key between the smart grid-IoT device of the user and the edge server but also guarantees anonymity.

An Authentication Management using Biometric Information and ECC in IoT-Edge Computing Environments (IoT-EC 환경에서 일회용 생체정보와 ECC를 이용한 인증 관리)

  • Seungjin Han
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.142-148
    • /
    • 2024
  • It is difficult to apply authentication methods of existing wired or wireless networks to Internet of Things (IoT) devices due to their poor environment, low capacity, and low-performance processor. In particular, there are many problems in applying methods such as blockchain to the IoT environment. In this paper, edge computing is used to serve as a server that authenticates disposable templates among biometric information in an IoT environment. In this environment, we propose a lightweight and strong authentication procedure using the IoT-edge computing (IoT-EC) system based on elliptic curve cryptographic (ECC) and evaluate its safety.