• Title/Summary/Keyword: IoT 결함

Search Result 645, Processing Time 0.034 seconds

An Education Method of Java SW Designs for IoT Wireless Device Control using Microbits (마이크로비트를 이용한 IoT 무선 디바이스 제어용 Java SW설계 교육 방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.12 no.1
    • /
    • pp.85-91
    • /
    • 2020
  • SW which controls IoT devices using wireless communication technology must operate without errors. In order for IoT devices to be widely used, the technical skills of engineers who design such software must be improved. Compared to designing the input / output SW of a single device, the SW Flowchart design and Java SW programming process that clearly define various input / output relations between the transmitter and the receiver are complicated. In this paper, we proposed a SW Flowchart design method for controlling IoT devices based on wireless communication. In this process, it is explained that the entire control algorithm is implemented through a problem division process. In addition, we proposed an educational method for programming the designed SW Flowchart into Java SW using Microbits, which are educational IoT devices. In the course to which this education method was applied, the results of satisfaction evaluation of students were analyzed, and the effectiveness of the IoT device control SW education method using Microbits was analyzed.

Probability-based Deep Learning Clustering Model for the Collection of IoT Information (IoT 정보 수집을 위한 확률 기반의 딥러닝 클러스터링 모델)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.18 no.3
    • /
    • pp.189-194
    • /
    • 2020
  • Recently, various clustering techniques have been studied to efficiently handle data generated by heterogeneous IoT devices. However, existing clustering techniques are not suitable for mobile IoT devices because they focus on statically dividing networks. This paper proposes a probabilistic deep learning-based dynamic clustering model for collecting and analyzing information on IoT devices using edge networks. The proposed model establishes a subnet by applying the frequency of the attribute values collected probabilistically to deep learning. The established subnets are used to group information extracted from seeds into hierarchical structures and improve the speed and accuracy of dynamic clustering for IoT devices. The performance evaluation results showed that the proposed model had an average 13.8 percent improvement in data processing time compared to the existing model, and the server's overhead was 10.5 percent lower on average than the existing model. The accuracy of extracting IoT information from servers has improved by 8.7% on average from previous models.

Comparison of encryption algorithm performance between low-spec IoT devices (저 사양 IoT 장치간의 암호화 알고리즘 성능 비교)

  • Park, Jung Kyu;Kim, Jaeho
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.79-85
    • /
    • 2022
  • Internet of Things (IoT) connects devices with various platforms, computing power, and functions. Due to the diversity of networks and the ubiquity of IoT devices, demands for security and privacy are increasing. Therefore, cryptographic mechanisms must be strong enough to meet these increased requirements, while at the same time effective enough to be implemented in devices with long-range specifications. In this paper, we present the performance and memory limitations of modern cryptographic primitives and schemes for different types of devices that can be used in IoT. In addition, detailed performance evaluation of the performance of the most commonly used encryption algorithms in low-spec devices frequently used in IoT networks is performed. To provide data protection, the binary ring uses encryption asymmetric fully homomorphic encryption and symmetric encryption AES 128-bit. As a result of the experiment, it can be seen that the IoT device had sufficient performance to implement a symmetric encryption, but the performance deteriorated in the asymmetric encryption implementation.

Ontology-based IoT Platform for Improving Interoperability (상호운용성 향상을 위한 온톨로지 기반의 IoT 플랫폼)

  • Lee, Kangjun;Jang, Woolin;Yang, Byeongheon;Lee, Seungyeon;Jeong, Dongwon;Lee, Sukhoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.6-8
    • /
    • 2021
  • Recently, the Internet of Things technologies are continuously advanced, and IoT devices are being used in various domain. IoT platforms should not only collect and manage data by connecting to various devices, but also monitor and control them. However, conventional IoT platforms have different data types and protocols, and have the problem of not monitoring or controlling cross-platform devices. This research proposes an ontology-based IoT platform to resolve this problem. Therefore, this research analyzes the types and characteristics of conventional IoT platforms, and this paper proposes a new platform architecture based on the analysis. The proposed platform is expected to flexible data management and improvement of interoperability between other platforms by utilizing ontology technology.

  • PDF

A Study on Performance Analysis of a Messaging System in IoT Environments (IoT 환경에서의 메시징 시스템의 성능 분석에 관한 연구)

  • Young-Dong Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.112-118
    • /
    • 2023
  • Internet of Things(IoT) technology is developing to a stage where the Internet and objects are connected and objects themselves analyze and judge data to interconnect the real world and the virtual world in real time. This technology consists of sensors, actuators, devices, and networks, and it is being applied in various fields. As the number of IoT devices and applications increases, data traffic also increases. In this paper, a messaging system is designed and implemented in order to analyze the performance between an IoT device and MQTT broker. The experimental was performed to measure MQTT-based round-trip time and message transmission time between the IoT device and the broker. The result shows that there is no packet loss, and propagation delay affects round-trip time.

Key Management for Secure Internet of Things(IoT) Data in Cloud Computing (클라우드 컴퓨팅에서 안전한 사물인터넷 데이터를 위한 키 관리)

  • Sung, Soon-hwa
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.353-360
    • /
    • 2017
  • The Internet of Things(IoT) security has more need than a technical problem as it needs series of regulations and faultless security system for common purposes. So, this study proposes an efficient key management in order that can be trusted IoT data in cloud computing. In contrast with a key distribution center of existing sensor networks, the proposed a federation key management of cloud proxy key server is not central point of administration and enables an active key recovery and update. The proposed key management is not a method of predetermined secret keys but sharing key information of a cloud proxy key server in autonomous cloud, which can reduce key generation and space complexity. In addition, In contrast with previous IoT key researches, a federation key of cloud proxy key server provides an extraction ability from meaningful information while moving data.

RF Energy Transfer Testbed Based on Off-the-shelf Components for IoT Application (IoT 응용을 위한 RF 에너지 전송 테스트베드 구현 및 실험)

  • Aziz, Arif Abdul;Tribudi, Dimas;Ginting, Lorenz;Rosyady, Phisca Aditya;Setiawan, Dedi;Choi, Kae Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1912-1921
    • /
    • 2015
  • In this paper, we introduce a testbed for testing the RF energy transfer technology in the Internet of Things (IoT) environment, and provide experimental results obtained by using the testbed. The IoT environment considered in this paper consists of a power beacon, which is able to wirelessly transfers energy via microwave, and multiple sensor nodes, which makes use of the energy received from the power beacon. We have implemented the testbed to experiment the RF energy transfer in such IoT environment. We have used off-the-shelf hardware components to build the testbed and have made the tesbed controlled by software so that various energy and data transmission protocol experiments can easily be conducted. We also provide experimental results and discuss the future research direction.

Active-Passive Ranging Method for Effective Positioning in Massive IoT Environment (대규모 IoT 환경에서의 효과적 측위를 위한 능동적-수동적 거리 추정 기법)

  • Byungsun Hwang;Seongwoo Lee;Kyoung-Hun Kim;Young-Ghyu Sun;Jin-Young Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.41-47
    • /
    • 2024
  • With the advancement and proliferation of the Internet of Things (IoT), a wide range of location-based services are being offered, and various ranging methods are being researched to meet the objectives of the required services. Conventional ranging methods involve the direct exchange of signals between tags and anchors to estimate distance, presenting a limitation in efficiently utilizing communication resources in large-scale IoT environments. To overcome these limitations, active-passive ranging methods have been proposed. However, there is a lack of theoretical convergence guarantees against clock drift errors and a detailed analysis of the characteristics of ranging estimation techniques, making it challenging to derive precise positioning results. In this paper, an improved active-passive ranging method that accounts for clock drift errors is proposed for precise positioning in large-scale IoT environments. The simulation results confirmed that the proposed active-passive ranging method can enhance distance estimation performance by up to 94.4% and 14.4%, respectively, compared to the existing active-passive ranging methods.

A Study on the Northeast Asia Frequency and Standadization of IoT trends (동북아 지역 IoT 주파수 공동이용을 위한 동향분석 및 기술표준 방향 연구)

  • Lee, Dong-Chul;Baek, Seong Jun;Gue, Kyo Kwang;Kwen, Tae Ho;Kim, Sung Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.399-401
    • /
    • 2018
  • 몇 년 사이에 IoT는 통신 프로토콜과 디바이스 중심의 단순한 개념에서 점점 진화 하여, 디바이스, 인터넷기술, 그리고 사람(사물, 데이터 등)이 보안, 프라이버시, 신뢰도 문제를 해결하는 것까지 포함한 비즈니스 혁신, 재현성, 상호 운용성을 위한 완전한 생태계를 창조하는 것으로 개념이 바뀌어 가고 있다. IERC는 실제와 가상의 사물들이 고유특성과 물리적 가상적 특성을 가지고 있고, 지능형 인터페이스를 사용하며, 끊김없이 정보네트워크를 통합 하는 표준과 상호운용 통신 프로토콜을 기반으로 자기 스스로 재구성이 가능한 동적인 글로벌 네트워크 인프라로 정의함으로써 IoT의 범위를 인프라까지 확대 정의하고 있는 추세이다. 이와 같은 IoT 영역이 확대되면서, 일반적으로 IoT의 4대 기술 분야를 센싱기술, 유 무선 통신 네트워크 기술, 플랫폼 기술 및 서비스 기술로 분류하고 있으며, 이 중에서 다양한 전파서비스를 제공하기 위해서는 무선통신망 구축이 필수이며, 이를 실현하기 위해서는 주파수 자원 확보가 매우 중요하다. 본고에서는 이를 실현화 시킬 수 있는 동북아지역 IoT주파수 동향 및 표준화에 대하여 결과를 제시하고자 한다.

  • PDF

Study on Battery Power based IoT Device Lightweight Authentication Protocol (베터리 전력 환경 IoT 디바이스 경량 인증 프로토콜 연구)

  • Sung-Hwa Han
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.165-171
    • /
    • 2024
  • Due to the IT convergence trend, many industrial domains are developing their own IoT services. With batteries and lightweight devices, IoT could expand into various fields including smart farms, smart environments, and smart energy. Many battery-powered IoT devices are passive in enforcing security techniques to maintain service time. This is because security technologies such as cryptographic operations consume a lot of power, so applying them reduces service maintenance time. This vulnerable IoT device security environment is not stable. In order to provide safe IoT services, security techniques considering battery power consumption are required. In this study, we propose an IoT device authentication technology that minimizes power consumption. The proposed technology is a device authentication function based on the Diffie-Hell man algorithm, and has the advantage that malicious attackers cannot masquerade the device even if salt is leaked during the transmission section. The battery power consumption of the authentication technology proposed in this study and the ID/PW-based authentication technology was compared. As a result, it was confirmed that the authentication technique proposed in this study consumes relatively little power. If the authentication technique proposed in this study is applied to IoT devices, it is expected that a safer IoT security environment can be secured.