• Title/Summary/Keyword: IoT:Internet of Things

Search Result 1,866, Processing Time 0.026 seconds

Investigation of Research Topic and Trends of National ICT Research-Development Using the LDA Model (LDA 토픽모델링을 통한 ICT분야 국가연구개발사업의 주요 연구토픽 및 동향 탐색)

  • Woo, Chang Woo;Lee, Jong Yun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.9-18
    • /
    • 2020
  • The research objectives investigates main research topics and trends in the information and communication technology(ICT) field, Korea using LDA(Latent Dirichlet Allocation), one of the topic modeling techniques. The experimental dataset of ICT research and development(R&D) project of 5,200 was acquired through matching with the EZone system of IITP after downloading R&D project dataset from NTIS(National Science and Technology Information Service) during recent five years. Consequently, our finding was that the majority research topics were found as intelligent information technologies such as AI, big data, and IoT, and the main research trends was hyper realistic media. Finally, it is expected that the research results of topic modeling on the national R&D foundation dataset become the powerful information about establishment of planning and strategy of future's research and development in the ICT field.

An Approach for Development of Academia-Industrial Cooperation and Design Education-Centered Creative Engineering Education (산학협력과 설계 교육 중심의 창의적 공학교육 발전 방안)

  • Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.573-581
    • /
    • 2019
  • In the era of the 4th Industrial Revolution, the necessity of training advanced engineering personnel with convergent creativity to handle technologies such as artificial intelligence, big data, and the internet of things (IoT) is increasing. In this paper, a new approach of engineering education based on academia-industrial cooperation and design-centered teaching technique for the students who need to learn practicable engineering skill with convergent creativity for the fourth industrial age is presented. It analyzes the strengths and weaknesses of the existing engineering education innovation activities, presents the practical necessities based on the experience of the educational system and the requirements of the educational environment, and analyzes the existing activities and the new roles. In particular, we discuss how to combine student-centered teaching methodology for effective design education, which is a key element of innovative engineering education. Most of the presented methods are verified by the authors' needs and effects in the education field.

Performance Comparison of Task Partitioning Methods in MEC System (MEC 시스템에서 태스크 파티셔닝 기법의 성능 비교)

  • Moon, Sungwon;Lim, Yujin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.5
    • /
    • pp.139-146
    • /
    • 2022
  • With the recent development of the Internet of Things (IoT) and the convergence of vehicles and IT technologies, high-performance applications such as autonomous driving are emerging, and multi-access edge computing (MEC) has attracted lots of attentions as next-generation technologies. In order to provide service to these computation-intensive tasks in low latency, many methods have been proposed to partition tasks so that they can be performed through cooperation of multiple MEC servers(MECSs). Conventional methods related to task partitioning have proposed methods for partitioning tasks on vehicles as mobile devices and offloading them to multiple MECSs, and methods for offloading them from vehicles to MECSs and then partitioning and migrating them to other MECSs. In this paper, the performance of task partitioning methods using offloading and migration is compared and analyzed in terms of service delay, blocking rate and energy consumption according to the method of selecting partitioning targets and the number of partitioning. As the number of partitioning increases, the performance of the service delay improves, but the performance of the blocking rate and energy consumption decreases.

Development of exothermic system based on internet of things for preventing damages in winter season and evaluation of applicability to railway vehicles

  • Kim, Heonyoung;Kang, Donghoon;Joo, Chulmin
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.653-660
    • /
    • 2022
  • Gravel scattering that is generated during operation of high-speed railway vehicle is cause to damage of vehicle such as windows, axle protector and so on. Especially, those are frequently occurred in winter season when snow ice is generated easily. Above all, damage of vehicle windows has not only caused maintenance cost but also increased psychological anxiety of passengers. Various methods such as heating system using copper wire, heating jacket and heating air are applied to remove snow ice generated on the under-body of vehicle. However, the methods require much run-time and man power which can be low effectiveness of work. Therefore, this paper shows that large-area heating system was developed based on heating coat in order to fundamentally prevent snow ice damage on high-speed railway vehicle in the winter season. This system gives users high convenience because that can remotely control the heating system using IoT-based wireless communication. For evaluating the applicability to railroad sites, a field test on an actual high-speed railroad operation was conducted by applying these techniques to the brake cylinder of a high-speed railroad vehicle. From the results, it evaluated how input voltage and electric power per unit area of the heating specimen influences exothermic performance to draw the permit power condition for icing. In the future, if the system developed in the study is applied at the railroad site, it may be used as a technique for preventing all types of damages occurring due to snow ice in winter.

A Novel Way of Context-Oriented Data Stream Segmentation using Exon-Intron Theory (Exon-Intron이론을 활용한 상황중심 데이터 스트림 분할 방안)

  • Lee, Seung-Hun;Suh, Dong-Hyok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.799-806
    • /
    • 2021
  • In the IoT environment, event data from sensors is continuously reported over time. Event data obtained in this trend is accumulated indefinitely, so a method for efficient analysis and management of data is required. In this study, a data stream segmentation method was proposed to support the effective selection and utilization of event data from sensors that are continuously reported and received. An identifier for identifying the point at which to start the analysis process was selected. By introducing the role of these identifiers, it is possible to clarify what is being analyzed and to reduce data throughput. The identifier for stream segmentation proposed in this study is a semantic-oriented data stream segmentation method based on the event occurrence of each stream. The existence of identifiers in stream processing can be said to be useful in terms of providing efficiency and reducing its costs in a large-volume continuous data inflow environment.

FPGA integrated IEEE 802.15.4 ZigBee wireless sensor nodes performance for industrial plant monitoring and automation

  • Ompal, Ompal;Mishra, Vishnu Mohan;Kumar, Adesh
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2444-2452
    • /
    • 2022
  • The field-programmable gate array (FPGA) is gaining popularity in industrial automation such as nuclear power plant instrumentation and control (I&C) systems due to the benefits of having non-existence of operating system, minimum software errors, and minimum common reason failures. Separate functions can be processed individually and in parallel on the same integrated circuit using FPGAs in comparison to the conventional microprocessor-based systems used in any plant operations. The use of FPGAs offers the potential to minimize complexity and the accompanying difficulty of securing regulatory approval, as well as provide superior protection against obsolescence. Wireless sensor networks (WSNs) are a new technology for acquiring and processing plant data wirelessly in which sensor nodes are configured for real-time signal processing, data acquisition, and monitoring. ZigBee (IEEE 802.15.4) is an open worldwide standard for minimum power, low-cost machine-to-machine (M2M), and internet of things (IoT) enabled wireless network communication. It is always a challenge to follow the specific topology when different Zigbee nodes are placed in a large network such as a plant. The research article focuses on the hardware chip design of different topological structures supported by ZigBee that can be used for monitoring and controlling the different operations of the plant and evaluates the performance in Vitex-5 FPGA hardware. The research work presents a strategy for configuring FPGA with ZigBee sensor nodes when communicating in a large area such as an industrial plant for real-time monitoring.

Mid to Long Term R&D Direction of UAV for Disaster & Public Safety (재난치안용 무인기 중장기 연구개발 방향)

  • Kim, Joune Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.83-90
    • /
    • 2020
  • Disasters are causing significant damage to the lives and property of our society and are recognized as social problems that need to be solved nationally and globally. The 4th industrial revolution technologies affecting society as a whole such as the Internet of Things(IoT), Artificial Intelligence(AI), Drones(Unmanned Aerial Vehicles), and Big Data are continuously absorbed into the disaster and safety industries as scientific and technological tools for solving social problems. Very soon, twenty-nine domestic UAV-related organizations/companies will complete the construction of a multicopter type small UAV integrated system ('17~'20) that can be operated at disaster and security sites. The current work considers and proposes the mid-to-long term R&D direction of disaster UAV as a strategic asset of the national disaster response system. First, the trends of disaster and safety industry and policy are analyzed. Subsequently, the development status and future plans of small UAV, securing shortage technology, and strengthening competitiveness are analyzed. Finally, step-by-step R&D direction of disaster UAV in terms of development strategy, specialized mission, platform, communication, and control and operation is proposed.

Development of Contents on the Marine Meteorology Service by Meteorology and Climate Big Data (기상기후 빅데이터를 활용한 해양기상서비스 콘텐츠 개발)

  • Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.125-138
    • /
    • 2016
  • Currently, there is increasing demand for weather information, however, providing meteorology and climate information is limited. In order to improve them, supporting the meteorology and climate big data platform use and training the meteorology and climate big data specialist who meet the needs of government, public agencies and corporate, are required. Meteorology and climate big data requires high-value usable service in variety fields, and it should be provided personalized service of industry-specific type for the service extension and new content development. To provide personalized service, it is essential to build the collaboration ecosystem at the national level. Building the collaboration ecosystem environment, convergence of marine policy and climate policy, convergence of oceanography and meteorology and convergence of R&D basic research and applied research are required. Since then, demand analysis, production sharing information, unification are able to build the collaboration ecosystem.

Data Transmission Method using Broadcasting in Bluetooth Low Energy Environment (저전력 블루투스 환경에서 브로드캐스팅을 이용한 데이터전송 방법)

  • Jang, Rae-Young;Lee, Jae-Ung;Jung, Sung-Jae;Soh, Woo-Young
    • Journal of Digital Contents Society
    • /
    • v.19 no.5
    • /
    • pp.963-969
    • /
    • 2018
  • Wi-Fi and Bluetooth technologies are perhaps the most prominent examples of wireless communication technologies used in the Internet of Things (IoT) environment. Compared to widely used Wi-Fi, Bluetooth technology has some flaws including 1:1 connection (one-way) between Master and Slave, slow transmission, and limited connection range; Bluetooth is mainly used for connecting audio devices. Since the release of Bluetooth Low Energy (BLE), some of the flaws of Bluetooth technology have been improved but it still failed to become a competitive alternative of Wi-Fi. This paper presents a method of data transmission through broadcasting in BLE and demonstrates its performance, one-to-many data transfer result. The Connection-Free Data Transmission proposed in this paper will hopefully be utilized in special circumstances requiring 1:N data transmission or disaster security network.

RFID Tag Ownership Relocation Protocol Based on Trusted Third Party (신뢰받는 제3자 기반의 RFID 태그 소유권 이전 프로토콜)

  • Kim, Young-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.568-574
    • /
    • 2015
  • Recently RFID not only is widely utilized in various fields such as inventory management, merchandize logistics, etc., but also, has evolved as an important component of the Internet of Things (IoT). According to increasing the utilization field of RIFD, studies for security and privacy for RFID system have been made diverse. Among them, the ownership transfer protocols for RFID tags have also been proposed in connection with the purchase of products embedded with RFID tag. Recently, Kapoor and Piramuthu proposed a RFID ownership transfer protocol to solve the problems of security weakness of the previous RFID ownership transfer protocols. In this paper, we show that Kapoor-Piramuthu's protocol also has security problems and provide a new protocol to resolve them. Security analysis of newly proposed protocol shows the security concerns are resolved.