• Title/Summary/Keyword: Inviscid flow

Search Result 244, Processing Time 0.032 seconds

An Aerodynamic Performance Analysis of the Low-Speed Airfoils in Seperated Flow Field (박리유동장에서 저속 익형의 공기역학적 성능해석)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.153-168
    • /
    • 1995
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the subsonic airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid-incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid-compressible flow analysis. The Goradia's integral method and the Truckenbrodt integral method are adopted for the boundary layer analysis of the laminar flow and the turbulent flow respectively. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. And the analysis of the seperated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered and its geometry expressed by the formula of Summey & Smith when no seperation occurs. A computational efficiency is verified by the comparison of the computational results with experimental data and by the shorter execution time.

  • PDF

Numerical Analysis of Nonequilibrium Chemically Reacting Inviscid flow over Blunt-bodies Using Upwind Method (Upwind 방법을 이용한 무딘물체 주위의 화학적 비평형 비점성 유동장의 수치 해석)

  • Seo Jeong Il;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.99-105
    • /
    • 1997
  • A finite-difference method based on conservative supra characteristic method type upwind flux difference splitting has been developed to study the nonequilibrium chemically reacting inviscid flow. For nonequilibrium air, NS-1 species equations were strongly coupled with flowfield equations through convection and species production terms. Inviscid nonequilibrium chemically reacting air mixture flows over Blunt-body were solved to demonstrate the capability of the current method. At low altitude flight conditions the nonequilibrium air models predicted almost the same temperature, density and pressure behind the shock as equilibrium flow: however, at high altitudes they showed substantial differences due to nonequilibrium chemistry effect. The new nonequilibrium chemically reacting upwind flux difference splitting mettled can be extended to viscous flow and multi-dimensional flow conditions.

  • PDF

A theoretical analysis on the inviscid stagnation-flow solidification problem (비점성 정체 유동 응고 문제에 대한 이론적 해석)

  • 유주식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • This study investigates the problem of phase change from liquid to solid in the inviscid stagnation flow. The solution of dimensionless governing equations is determined by the three dimensionless parameters of (temperature ratio/conductivity ratio), Stefan number, and diffusi-vity ratio. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The equilibrium state is dependent on (temperature ratio/conductivity ratio), but is independent of Stefan number and diffusivity ratio. The effect of fluid flow on the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state, and the characteristics of the solidification process for all the dimensionless parameters are elucidated.

  • PDF

Heat Transfer and Solidification in the Inviscid Stagnation Flow (비점성 정체 유동 하에서의 응고와 열전달)

  • Yoo Joo-Sik;Kim Yong-Jin
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • This study investigates the problem of phase change from liquid to solid in the inviscid stagnation flow. The instantaneous location of the solid-liquid interface is fixed for all times by a coordinate transformation. Finite difference method is used to obtain the solution of the unsteady problem, and the growth rate of solid and the transient heat transfer from the surfaces of solid are investigated. The transient solution is dependent on the three dimensionless parameters, but the final steady state is determined by only one parameter of temperature ratio/conductivity ratio. It is observed that the instantaneous heat flux at the surface of solid can be obtained with sufficient accuracy by measuring the thickness of the solid or vice versa.

  • PDF

A method for predicting the aerodynamic performance of low-speed airfoils (저속익형의 공기역학적 성능예측의 한 방법)

  • Yu, Neung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.240-252
    • /
    • 1998
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the low speed airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid compressible flow analysis. The Goradia integral method is adopted for the boundary layer analysis of the laminar and turbulent flows. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. The analysis of the separated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered by expressing its geometry using the formula of Summey and Smith when no separation occurs. The computational efficiency is verified by comparing the computational results with experimental data and by the shorter execution time.

Labyrinth Seal Effects in Turbines (터빈 실(Seal)의 유동 해석)

  • Song, Bum Ho;Song, Seung Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.158-162
    • /
    • 2000
  • Secondary flows in gas turbines, especially those associated tip clearance and labyrinth seals, have become a focus of interest for engine manufacturers. In the past, many analytical and experimental studies, which focused solely on the flows in either tip clearances or seals, have been conducted. This paper presents an analytical model that describes the flow response in a single stage turbine induced by a finite sealing gap at the turbine rotor. The flow is assumed to be axisymmetric and the analysis is done in the meridional plane. Upon going through the stage, the radially uniform upstream flow is assumed to split into two streams one associated with the seal and the other which has gone through the blades. The former is referred to as the leakage flow, and the latter is referred the as the passage flow. The passage flow is assumed to be inviscid and incompressible while the flow in the seal can be modeled as either inviscid or viscous. Thus, the model is capable of predicting the kinematic effects of labyrinth seals on the turbine flow field.

  • PDF

Matching inviscid and boundary layer method for incompressible and compressible flows (비압축성과 압축성 유동에 있어서 비점성 유동과 경계층 유동의 결합)

  • Sohn, Chang-Hyun;Moon, Su-Yeon;Lee, Jeong-Yun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1966-1971
    • /
    • 2003
  • Matching inviscid and boundary layer methods are developed for hypersonic flow with thick boundray layer. The new equations match all the boundary layer properties with a variation in the inviscid solution near the edge, except for the normal velocity. Computational comparison are performed for incompressible and compressible flows over a flat plate. Results from the present method are compared with Navier-Stokes solutions. The present results are in good agreement with Navier-Stokes solutions. They show that the new technique can provide improved heating rates and skin friction predictions for preliminary design of vehicles where shear layers and entropy layer swallowing are important.

  • PDF

A numerical Analysis on Three-Dimensional Inviscid Transonic Cascade Flow (3차원 비점성 천음속 익렬 유동에 관한 수치해석적 연구)

  • 이훈구;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.336-347
    • /
    • 1992
  • The three dimensional inviscid transonic cascade flow was investigated numerically, incorporation a four stage Runge-Kutta integration method proposed by Jameson. Time marching to the steady state was accelerated by using optimum time step and enthalpy damping. In describing the boundary conditions at inlet and outlet, Riemann invariants are considered. By adding a second and a fourth order artificial viscocities, the numerical instability due to the propagation of undamped disturbance or the rapid change of state near the shock has been prevented. The numerical results for are bump cascade, cambered two dimensional turbine cascade and three dimensional stator cascade agreed reasonably well with previous results. It has been known that the accuracy of the solution depended a lot on the modeling of the leading or trailing edge.