• Title/Summary/Keyword: Inverter systems

Search Result 817, Processing Time 0.021 seconds

SiC Motor Drive for Elevator System (엘리베이터 시스템을 위한 SiC 권상기 드라이브)

  • Gwon, Jin-Su;Moon, Seok-Hwan;Kim, Ju-Chan;Lee, Joon-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.147-152
    • /
    • 2019
  • With the recent emphasis on the importance of energy conservation, studies on high-efficiency elevator systems are being continuously conducted. Therefore, pulse width modulation converters are commonly used in traction drives on elevator systems. Wide bandgap devices have been increasingly commercialized, and their application to power conversion systems, such as renewable and energy storage system, has been gradually increasing. In this study, a SiC inverter for an elevator traction drive is investigated. In particular, an inverter is designed to minimize stray and parasitic inductance. Input and output filters are designed by considering switching frequency. The designed SiC inverter reduces volume by approximately 32% compared with that of a Si inverter, and power converter efficiency is over 98.8%.

A Novel Flyback-type Utility Interactive Inverter for AC Module Systems

  • Shimizu Toshihisa;Nakamura Naoki;Wada Keiji
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.518-522
    • /
    • 2001
  • In recent years, natural energy has attracted growing interest because of environmental concerns. Many studies have been focused on photovoltaic power generation systems because of the ease of use in urban areas. On the conventional system, many photovoltaic modules (PV modules) are connected in series in order to obtain the sufficient DC-bus voltage for generating AC output voltage at the inverter circuit. However, the total generation power on the PV modules sometimes decreases remarkably because of the shadows that partially cover the PV modules. In order to overcome this drawback, an AC module strategy is proposed. On this system, a small power DC-AC utility interactive inverter is mounted on each PV module individually and the inverter operates so as to generate the maximum power from the corresponding PV module. This paper presents a novel flyback-type utility interactive inverter circuit suitable for AC module systems. The feature of the proposed system are, (1) small in volume and light in weight, (2) stable AC current injection, (3) enabling a small DC capacitor. The effectiveness of the proposed system is clarified through the simulation and the experiments.

  • PDF

Design and Implementation of Wireless Intelligent Controller for Micro-Inverter in Solar Power Systems (태양광 발전시스템에서 사용하는 마이크로인버터용 무선지능형제어기 설계 및 구현)

  • Han, Seongtaek
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.9-17
    • /
    • 2019
  • Sun power generation systems which use large capacity centralized inverters have loss of power generation due to cloud and building shadows, pollution, cell deterioration, etc. To minimize loss of power generation, decentralized solar power systems using multiple micro-inverters are being proposed as an alternative. A distributed solar power system consisting of a system-connected system uses power line communication to collect data from the micro-inverters. Power line communication has the advantage of using power lines without separate lines for data transmission, but in distributed solar power generation systems that use a large number of micro-inverters, the bit error rate is less reliable due to the phenomenon caused by limited transmission power, high load interference and noise, variable signal attenuation, and impedance characteristics. So we proposed wireless intelligent controller for micro-inverter that is used to build distributed solar power systems. and we design and implement that. Further, the proposed wireless intelligent controller for micro-inverter was used to establish a small-volume solar power plant to check its function and operation.

Comparative Analysis of the PWM of an Inverter for an Electric Aircraft Thrust Motor

  • Koo, Bon-soo;Jo, Seong-hyeon;Choi, In-ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.21-29
    • /
    • 2021
  • As global environmental regulations have been strengthened, the eco-friendly market has grown rapidly. In the field of aircraft, research on electric vertical take-off and landing aircraft that can enter city centers and perform personal air transportation using electric propulsion is ongoing. For aircraft using electric propulsion methods to operate reliably, electric power thrust systems are a key factor. Electric aircraft require a high power density for propulsion systems with strict limits on volume and weight. The efficient control of inverter systems is essential for achieving high power density. Therefore, in this paper, the characteristics of inverters and motors were analyzed through simulations based on the space vector pulse width modulation (PWM) and discontinuous PWM methods for controlling inverter systems.

A Study on Nonlinear Control Strategy for Three-phase Voltage Source PWM DC/AC Inverter based on the PCH Model

  • Mu, Xiaobin;Wang, Jiuhe;Bao, Xueyu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.53-57
    • /
    • 2012
  • The mathematical model of a three-phase voltage source pulse-width modulation (PWM) DC/AC inverter is non-linear, and in view of the traditional linear control strategy it can not meet the requirements of designing a high-performance inverter. What's more, when the loads are not pure resistive loads, the inverter further requires that the controller possess high-performance. This paper proposes a nonlinear control strategy for the inverter called Passivity-based Control. We can alter the inverter model in three-phase abc coordinate to two-phase synchronous rotating dq coordinate for establishing the port-control Hamiltonian (PCH) model for this system. We can control the distribution of energy in the system to achieve the control aim. Simulation results show that the passivity-based control method can make this system possess a level of high-performance that is both robust and dynamic.

A Power Regulation and Harmonic Current Elimination Approach for Parallel Multi-Inverter Supplying IPT Systems

  • Mai, Ruikun;Li, Yong;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1245-1255
    • /
    • 2016
  • The single resonant inverter is widely employed in typical inductive power transfer (IPT) systems to generate a high-frequency current in the primary side. However, the power capacity of a single resonant inverter is limited by the constraints of power electronic devices and the relevant cost. Consequently, IPT systems fail to meet high-power application requirements, such as those in rail applications. Total harmonic distortion (THD) may also violate the standard electromagnetic interference requirements with phase shift control under light load conditions. A power regulation approach with selective harmonic elimination is proposed on the basis of a parallel multi-inverter to upgrade the power levels of IPT systems and suppress THD under light load conditions by changing the output voltage pulse width and phase shift angle among parallel multi-inverters. The validity of the proposed control approach is verified by using a 1,412.3 W prototype system, which achieves a maximum transfer efficiency of 90.602%. Output power levels can be dramatically improved with the same semiconductor capacity, and distortion can be effectively suppressed under various load conditions.

Innovative Electromagnetic Induction Eddy Current-based Far Infrared Rays Radiant Heater using Soft Switching PWM Inverter with Duty Cycle Control Scheme

  • Tanaka H.;Sadakata H.;Muraoka H.;Okuno A.;Hiraki E.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.64-68
    • /
    • 2001
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction heated type far infrared rays radiant heating appliance using the voltage-fed edge-resonant ZVS-PWM high frequency inverter using IGBTs for food cooking and processing which operates under a constant frequency variable power regulation scheme. This power electronic appliance with soft switching high frequency inverter using IGBTs has attracted special interest from some advantageous viewpoints of safety, cleanliness, compactness and rapid temperature response, which is more suitable for consumer power electronics applications.

  • PDF

Extended Boost Single-phase qZ-Source Inverter for Photovoltaic Systems

  • Shin, Hyun-Hak;Cha, Honnyong;Kim, Hongjoon;Kim, Heung-Geun
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.918-925
    • /
    • 2014
  • This study presents an extended boost single-phase qZ-source DC-AC inverter for a single-phase photovoltaic system. Unlike the previously proposed single-phase qZ-source and semi-qZ-source inverters that achieve the same output voltage as that of the traditional voltage-fed full-bridge inverter, the proposed inverter can obtain higher output than input voltage. The proposed inverter also shares a common ground between DC input voltage and AC output voltage. Thus, possible ground leakage current problem in non-isolated grid-tied inverters can be eliminated with the proposed inverter. A 120 W prototype inverter is built and tested to verify the performance of the proposed inverter.

A Novel Cost-Effective Two-Level Inverter with Combined Use of Thyristors and IGBTs

  • Chen, Dezhi;Zhao, Wenliang;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.152-159
    • /
    • 2018
  • In this paper, a novel topology of two-level voltage-type inverter is proposed. The proposed inverter has three bridge arms while each bridge is made up of two thyristors, one IGBT and four diodes. Thyristors complete the phase positioning of the inverter, IGBT completes the modulation of different modulation modes such as SPWM, SVPWM, and SHPWM, and the diodes complete the commutation of the bridge arms. Compared to the traditional voltage-type inverter with six IGBTs, the proposed voltage-type inverter using three IGBTs can achieve the same function with highly reduced cost. The principle of the proposed two-level inverter is explained in detail. The simulation and experiment results demonstrate the performance and effectiveness of the proposed inverter-type inverter.

A SRF Power Flow Control Method for Grid-Connected Single-Phase Inverter Systems (단상 계통연계 인버터의 SRF 전력제어 방법)

  • Park, Han-Eol;Kim, Eun-Seok;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.129-135
    • /
    • 2010
  • It is well known that distributed generation(DG) system using renewable energy is an alternative to solve the problems which result from the exhaustion of fossil fuel and the environmental pollution. A PWM inverter is required for a power flow control in the DG systems. This paper proposes a SRF power flow control method considering grid impedance in grid-connected single-phase inverter systems. The proposed SRF power flow control method can provide a voltage-reference for the single-phase inverter even without any grid impedance estimation so that the single-phase inverter system could operate in stand-alone mode and grid-connected mode based on the known nominal value of grid impedance. Also independent controls of active and reactive power are achieved by the proposed control method. The effectiveness and the validity of the proposed control method are demonstrated through simulations. The simulation results show that the proposed control method can control properly power flow in grid-connected single-phase inverter systems.