• Title/Summary/Keyword: Inverter power sources

Search Result 136, Processing Time 0.038 seconds

Induction Heating ZCS PWM SEPP High Frequency Inverter (유도가열용 ZCS PWM SEPP 고주파 인버터)

  • Mun, Sang-Pil;Gwon, Sun-Geol;Lee, Jong-Geol;Ju, Seok-Min;Gang, Sin-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.241-243
    • /
    • 2008
  • This research presented the new zero-current switching pulse width modulation SEPP(Single Ended Push-Full)high frequency inverter for solving the problem of the zero-current SEPP high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the zero-current switching pulse width modulation SEPP high frequency inverter. The inverter circuit which is attempted by on-off operation of a switch has the reduction effect of the power loss due to a soft switching and a high frequency switching. And it confirmed that the power regulation is possible continuously from 0.25[kW] until 2.84[kW] in the case the duty rate(D) changes from 0.08 to 0.3 under zero-current switching operating by a dissymmetry pulse width modulating control and the power conversion efficiency comes true the efficiency of 95[%]. Due to the result above, the ZCS PWM SEPP high frequency inverter will be effective as sources of an induction heating apparatus.

  • PDF

Dual Vector Control Strategy for a Three-Stage Hybrid Cascaded Multilevel Inverter

  • Kadir, Mohamad N. Abdul;Mekhilef, Saad;Ping, Hew Wooi
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.155-164
    • /
    • 2010
  • This paper presents a voltage control algorithm for a hybrid multilevel inverter based on a staged-perception of the inverter voltage vector diagram. The algorithm is applied to control a three-stage eighteen-level hybrid inverter, which has been designed with a maximum number of symmetrical levels. The inverter has a two-level main stage built using a conventional six-switch inverter and medium- and low- voltage three-level stages constructed using cascaded H-bridge cells. The distinctive feature of the proposed algorithm is its ability to avoid the undesirable high switching frequency for high- and medium- voltage stages despite the fact that the inverter's dc sources voltages are selected to maximize the number of levels by state redundancy elimination. The high- and medium- voltage stages switching algorithms have been developed to assure fundamental switching frequency operation of the high voltage stage and not more than few times this frequency for the medium voltage stage. The low voltage stage is controlled using a SVPWM to achieve the reference voltage vector exactly and to set the order of the dominant harmonics. The inverter has been constructed and the control algorithm has been implemented. Test results show that the proposed algorithm achieves the desired features and all of the major hypotheses have been verified.

Modeling and Analysis of the Micro-Grid with SVPWM Micro-Sources (SVPWM 방식 마이크로소스로 구성된 마이크로그리드 모델링 및 해석)

  • Son, Kwang-Myung;Lee, Kye-Byung;Kim, Young-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.12-19
    • /
    • 2006
  • Micro-source units having power ratings in thousands of watts can provide power quality with higher reliability and efficiency than the conventional large scale units. This paper develops switching level model of micro-source and studies the characteristics of the micro-grid consisting of multiple micro-sources and interfaced with electric power system. The developed model adopts the space vector PWM to fully utilize the capacity of inverter. The interaction of the grid connected micro-sources and the characteristics of the control system parameters are investigated. Micro-sources and micro-grid are implemented using PSCAD/EMTDC. Simulation results show that the proposed model is efficient for studying micro-grid system.

A simple 3-phase inverter topology to improve power conversion efficiency

  • Phan, Dang-Minh;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.25-26
    • /
    • 2014
  • Renewable energy sources such as wind and solar power are free and can be easily harvested everywhere. However, one of the biggest problems when using this kind of energy source is how to increase the efficiency of power conversion system. This paper introduces a modified 3-phase inverter in order to increase the power conversion efficiency. By adding 3 bi-directional switches at output of the inverter, the current flow back DC source during zero state is prevented to minimize leakage current, so that the efficiency of whole system is increased. The proposed topology also improves the power quality to satisfy the total harmonics distortion (THD) requirement. In order to verify the effectiveness of the proposed topology, simulation results are carried out using Simulink in MATLAB.

  • PDF

A New Basic Unit for Cascaded Multilevel Inverters with the Capability of Reducing the Number of Switches

  • Laali, Sara;Babaei, Ebrahim;Sharifian, Mohammad Bagher Bannae
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.671-677
    • /
    • 2014
  • In this paper, a new basic unit is proposed. Then, a cascaded multilevel inverter basded on the series connection of n number of these new basic units is proposed. In order to generate all of the voltage levels (even and odd) at the output, three different algorithms to determine the magnitude of the dc voltage source are proposed. Reductions in the number of power switches, driver circuits and dc voltage sources in addition to increases in the numbr of output voltage levels are some of the advantages of the proposed cascaded multilevel inverter. These results are obtained through a comparison of the proposed inverter and its algorithms with an H-bridge cascaded multilevel inverter from the point of view of the number of power electronic devices. Finally, the capability of the proposed topology with its proposed algorithms in generating all of the voltage levels is verified through experimental results on a laboratorary prototype of a 49-level inverter.

Experimental Validation of a Cascaded Single Phase H-Bridge Inverter with a Simplified Switching Algorithm

  • Mylsamy, Kaliamoorthy;Vairamani, Rajasekaran;Irudayaraj, Gerald Christopher Raj;Lawrence, Hubert Tony Raj
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.507-518
    • /
    • 2014
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a lower number of power semiconductor switches and isolated DC sources. Therefore, the number of power electronic devices, converter losses, size, and cost are reduced. The proposed multilevel converter topology consists of two H-bridges connected in cascaded configuration. One H-bridge operates at a high frequency (high frequency inverter) and is capable of developing a two level output while the other H-bridge operates at the fundamental frequency (low frequency inverter) and is capable of developing a multilevel output. The addition of each power electronic switch to the low frequency inverter increases the number of levels by four. This paper also introduces a hybrid switching algorithm which uses very simple arithmetic and logical operations. The simplified hybrid switching algorithm is generalized for any number of levels. The proposed simplified switching algorithm is developed using a TMS320F2812 DSP board. The operation and performance of the proposed multilevel converter are verified by simulations using MATLAB/SIMULINK and experimental results.

Embedded Switched-Inductor Z-Source Inverters

  • Nguyen, Minh-Khai;Lim, Young-Cheol;Chang, Young-Hak;Moon, Chae-Joo
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 2013
  • In this paper, a ripple input current embedded switched-inductor Z-source inverter (rESL-ZSI) and a continuous input current embedded switched-inductor Z-source inverter (cESL-ZSI) are proposed by inserting two dc sources into the switched-inductor cells. The proposed inverters provide a high boost voltage inversion ability, a lower voltage stress across the active switching devices, a continuous input current and a reduced voltage stress on the capacitors. In addition, they can suppress the startup inrush current, which otherwise might destroy the devices. This paper presents the operating principles, analysis, and simulation results, and compares them to the conventional switched-inductor Z-source inverter. In order to verify the performance of the proposed converters, a laboratory prototype was constructed with 60 $V_{dc}$ input to test both configurations.

a- Si:H TFT Level Shifter with Reduced Number of Power

  • Jeong, Nam-Hyun;Chun, Young-Tea;Kim, Jung-Woo;Bae, Byung-Seong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.20-23
    • /
    • 2008
  • We proposed a-Si:H TFT (hydrogenated amorphous silicon thin film transistor) level shifter which reduced number of power sources. To reduce the number of power sources from four to two, modified bootstrapped inverter was used for the level shifter. The shift register was verified by PSPICE circuit simulation and fabricated. The fabricated level shifter successfully shifted low input (0 to 5 V) to high level output (-7 to 23 V).

  • PDF

Multilevel Inverter using Two 5-level Inverters Connected in Series (두 대의 5-레벨 인버터의 직렬결합을 이용한 멀티레벨인버터)

  • Choi, Won-Kyun;Kwon, Cheol-Soon;Hong, Un-Taek;Kang, Feel-Soon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.376-380
    • /
    • 2010
  • This paper presents a circuit configuration of multilevel inverter to increase the number of output voltage levels by using conventional 5-level inverters connected in series. Most of all it can maximize the number of output voltage levels by employing input voltage sources, which have the power of five. When it synthesizes the same number of output voltage levels, the proposed inverter can save the number of switching devices compared with the conventional cascaded H-bridge cell inverter. So it can reduce the size, cost, power consumption of the system. We implemented computer-aided simulation and experiments for a 25-level inverter employing two 5-level inverters.

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.