• Title/Summary/Keyword: Inverter Circuit

Search Result 1,222, Processing Time 0.018 seconds

Configuration of Fuel Cell Power Generation System through Power Conversion Device Design (전력변환장치 설계를 통한 연료전지 발전시스템 구성)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.129-134
    • /
    • 2021
  • Recently, the demand for electricity is gradually increasing due to the rapid industrial development and the improvement of living standards. In the case of Korea, which is highly dependent on fossil fuels due to such a surge in electricity demand, reduction and freezing of greenhouse gas emissions due to international environmental regulations will immediately lead to a contraction in industrial activities. Accordingly, there are many difficulties in competition with advanced countries that want to link the environment with the country's industrial production activities, and the development of alternative energy as a countermeasure is of great interest around the world. Among these new power generation methods, small-scale power generation facilities with relatively small capacity include photovoltaic generation, wind power generation, and fuel cell generation. Among them, the fuel cell attracts the most attention in consideration of continuous operation, high power generation efficiency, and long-term durability, which are important factors for practical use. Therefore, in this paper, the fuel cell power generation system was researched and constructed by designing the power conversion circuit necessary to finally obtain the AC power used in our daily life by using the DC power generated from the fuel cell as an input.

Design and output control technique of sonar transmitter considering impedance variation of underwater acoustic transducer (수중 음향 트랜스듀서의 임피던스 변화를 고려한 소나 송신기의 설계 및 출력 제어 기법)

  • Shin, Chang-Hyun;Lee, Yoon-Ho;Ahn, Byoung-Sun;Yoon, Hong-Woo;Kwon, Byung-Jin;Kim, Kyung-Seop;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.481-491
    • /
    • 2022
  • The active sonar transmission system consists of a transmitter that outputs an electrical signal and an underwater acoustic transducer that converts the amplified electrical signal into an acoustic signal. In general, the transmitter output characteristics are dependent on load impedance, and an underwater acoustic transducer, which is a transmitter load, has a characteristic that the electrical impedance varies largely according to frequency when driven. In such a variable impedance condition, the output of the active sonar transmission system may become unstable. Hence, this paper proposes a design and control technique of a sonar transmitter for transmitting a stable transmission signal even under variable impedance conditions of an underwater acoustic transducer in an active sonar transmission system. The electrical impedance characteristics of the underwater acoustic transducer are experimentally analyzed, and the sonar transmitter is composed of a single-phase full-bridge inverter, an LC filter, and a matching circuit. In this paper, the design and output control method of the sonar transmitter is proposed to protect the transmitter and transducer. It can secure stable output voltage characteristics even if it transmits the Linear Frequency Modulation (LFM) signal. The validity is verified through the simulation and the experiment.