• 제목/요약/키워드: Inverted exponential distribution

검색결과 5건 처리시간 0.016초

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Communications for Statistical Applications and Methods
    • /
    • 제20권5호
    • /
    • pp.387-394
    • /
    • 2013
  • In this paper, we develop the noninformative priors for the ratio of the scale parameters in the inverted exponential distributions. The first and second order matching priors, the reference prior and Jeffreys prior are developed. It turns out that the second order matching prior matches the alternative coverage probabilities, is a cumulative distribution function matching prior and is a highest posterior density matching prior. In addition, the reference prior and Jeffreys' prior are the second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through a simulation study as well as provide an example based on real data is given.

Inverted exponentiated Weibull distribution with applications to lifetime data

  • Lee, Seunghyung;Noh, Yunhwan;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • 제24권3호
    • /
    • pp.227-240
    • /
    • 2017
  • In this paper, we introduce the inverted exponentiated Weibull (IEW) distribution which contains exponentiated inverted Weibull distribution, inverse Weibull (IW) distribution, and inverted exponentiated distribution as submodels. The proposed distribution is obtained by the inverse form of the exponentiated Weibull distribution. In particular, we explain that the proposed distribution can be interpreted by Marshall and Olkin's book (Lifetime Distributions: Structure of Non-parametric, Semiparametric, and Parametric Families, 2007, Springer) idea. We derive the cumulative distribution function and hazard function and calculate expression for its moment. The hazard function of the IEW distribution can be decreasing, increasing or bathtub-shaped. The maximum likelihood estimation (MLE) is obtained. Then we show the existence and uniqueness of MLE. We can also obtain the Bayesian estimation by using the Gibbs sampler with the Metropolis-Hastings algorithm. We also give applications with a simulated data set and two real data set to show the flexibility of the IEW distribution. Finally, conclusions are mentioned.

Sampling Plans Based on Truncated Life Test for a Generalized Inverted Exponential Distribution

  • Singh, Sukhdev;Tripathi, Yogesh Mani;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • 제14권2호
    • /
    • pp.183-195
    • /
    • 2015
  • In this paper, we propose a two-stage group acceptance sampling plan for generalized inverted exponential distribution under truncated life test. Median life is considered as a quality parameter. Design parameters are obtained to ensure that true median life is longer than a given specified life at certain level of consumer's risk and producer's risk. We also explore situations under which design parameters based on median lifetime can be used for other percentile points. Tables and specific examples are reported to explain the proposed plans. Finally a real data set is analyzed to implement the plans in practical situations and some suggestions are given.

Bayes Estimation of Two Ordered Exponential Means

  • Hong, Yeon-Woong;Kwon, Yong-Mann
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권1호
    • /
    • pp.273-284
    • /
    • 2004
  • Bayes estimation of parameters is considered for two independent exponential distributions with ordered means. Order restricted Bayes estimators for means are obtained with respect to inverted gamma, noninformative prior and uniform prior distributions, and their asymptotic properties are established. It is shown that the maximum likelihood estimator, restricted maximum likelihood estimator, unrestricted Bayes estimator, and restricted Bayes estimator of the mean are all consistent and have the same limiting distribution. These estimators are compared with the corresponding unrestricted Bayes estimators by Monte Carlo simulation.

  • PDF

Modified inverse moment estimation: its principle and applications

  • Gui, Wenhao
    • Communications for Statistical Applications and Methods
    • /
    • 제23권6호
    • /
    • pp.479-496
    • /
    • 2016
  • In this survey, we present a modified inverse moment estimation of parameters and its applications. We use a specific model to demonstrate its principle and how to apply this method in practice. The estimation of unknown parameters is considered. A necessary and sufficient condition for the existence and uniqueness of maximum-likelihood estimates of the parameters is obtained for the classical maximum likelihood estimation. Inverse moment and modified inverse moment estimators are proposed and their properties are studied. Monte Carlo simulations are conducted to compare the performances of these estimators. As far as the biases and mean squared errors are concerned, modified inverse moment estimator works the best in all cases considered for estimating the unknown parameters. Its performance is followed by inverse moment estimator and maximum likelihood estimator, especially for small sample sizes.