• 제목/요약/키워드: Inverted Pendulum System

검색결과 326건 처리시간 0.035초

회전형 역 진자 시스템에 대한 계층적 공정 경쟁 기반 유전자 알고리즘을 이용한 최적 Fuzzy 제어기 설계 (Design of Optimized Fuzzy Controller by Means of HFC-based Genetic Algorithms for Rotary Inverted Pendulum System)

  • 정승현;최정내;오성권
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.236-242
    • /
    • 2008
  • 본 논문은 회전형 역 진자 시스템(Rotary Inverted Pendulum System : RIPS)에 대한 계층적 공정 경쟁 기반 유전자 알고리즘(Hierarchical Fair Competition-based Genetic Algorithms : HFCGA) 기반 최적 퍼지 제어기 설계를 제안한다. 회전형 역 진자 시스템의 제어를 위해 퍼지제어기를 사용하였으며, 이때 퍼지제어기의 규칙은 LQR(Linear Quadratic Regulator) 제어기를 기반으로 하여 설계하였다. 유전자 알고리즘은 전역해를 구할 수 있는 장점이 있어 많은 분야에 성공적으로 적용되고 있지만 조기수렴 문제로 인하여 지역해에 빠질 수 있다. 이러한 문제를 해결하기 위하여 병렬유전자 알고리즘이 개발되었으며, HFCGA는 병렬유전자 알고리즘을 개선한 방법 중의 하나이다. 본 논문에서는 퍼지 제어기의 파라미터의 최적화를 위해 계층적 공정 경쟁 기반 유전자 알고리즘을 사용하였다. 시뮬레이션 및 실험을 통하여 LQR 제어기, 기존 단순유전자 알고리즘(SGA)을 이용한 퍼지제어기와 제안된 HFCGA 기반 퍼지제어기의 성능 비교를 통하여 제안된 방법의 우수성을 보인다.

Analysis of Effects of Time-Delay in an Inverted Pendulum System Using the Controller Area Network

  • Cho, Sung-Min;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1474-1479
    • /
    • 2004
  • In this paper, the design of the network system using the CAN and the analysis of effects of time delay in the system are presented. A conventional implementation technique induces many problems because of the amount and complexity of wiring and maintenance problems. The network system reduces these problems, but it cause another problem; time delay. Time delay in a sampling time does not have much effects on the system, but time delay over the sampling time changes the control frequency and ended up makes the system unstable. It is verified that time delay between each parts has different effects on the entire system. The results from this paper will be a base for studying algorithms to reduce effects of time delay in the system using the CAN.

  • PDF

C++Builder를 이용한 제어시스템 모니터링 (Control System Monitoring Using C++Builder)

  • 신명준;손영익;김갑일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.93-95
    • /
    • 2005
  • When a control system is designed computer simulations are important because they provide a way to test the performances of the control law and determine some design parameters of the control system. Since most real situations are different from those of the simulations, however, it is required to manage uncertainties of the plant and analyze errors fast and correctly. For this we consider a convenient monitoring system which can display real systems responses exactly and check the performances of the control systems. In this paper, an approach to design a monitoring system is presented by using C++Builder program which is based on PC. Firstly we introduce the structure and functions of the monitoring system. Then, an inverted-pendulum control system is investigated by using the monitoring system.

  • PDF

실시간 비전 시스템을 이용한 도립진자의 퍼지제어에 관한 연구 (A Study on Fuzzy Control of Inverted Pendulum Using Real_Time Vision System)

  • 최용선;박종규;임태우;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2596-2598
    • /
    • 2000
  • In this paper, real-time vision-eyed control system is proposed that combines the information handling capability of computer with the real-time image processing capability of CCD camera, and control effectively real system in the limited environment. The control system is applied to inverted pendulum system, namely, bench marking system. Feasibility of the system is shown in a viewpoint of simulations and experiments.

  • PDF

비 모델 외바퀴 로봇의 제어 (Control of a Unicycle Robot using a Non-model based Controller)

  • 안재원;김민규;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.537-542
    • /
    • 2014
  • This paper proposes a control system to keep the balance of a unicycle robot. The robot consists of the disk and wheel, for balancing and driving respectively, and the tile angle is measured and used for balancing by the IMU sensor. A PID controller is designed based on a non-model based algorithm to prove that it is possible to control the unicycle robot without any approximated linear system model such as the sliding mode control algorithm. The PID controller has the advantage that it is simple to design the controller and it does not require an unnecessary complex formula. In this paper, assuming that the pitch and roll axis are dynamically decoupled, each of the two controllers are designed separately. A reaction wheel pendulum method is used for the control of the roll axis, that is, for balancing and an inverted pendulum concept is used for the control of the pitch axis. To confirm the performance of the proposed controllers using MATLAB Simulink, the dynamic equations of the robot are derived.

Development of a General Purpose PID Motion Controller Using a Field Programmable Gate Array

  • Kim, Sung-Su;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.360-365
    • /
    • 2003
  • In this paper, we have developed a general purpose motion controller using an FPGA(Field Programmable Gate Array). The multi-PID controllers on a single chip are implemented as a system-on-chip for multi-axis motion control. We also develop a PC GUI for an efficient interface control. Comparing with the commercial motion controller LM 629 it has multi-independent PID controllers so that it has several advantages such as space effectiveness, low cost and lower power consumption. In order to test the performance of the proposed controller, robot finger is controlled. The robot finger has three fingers with 2 joints each. Finger movements show that position tracking was very effective. Another experiment of balancing an inverted pendulum on a cart has been conducted to show the generality of the proposed FPGA PID controller. The controller has well maintained the balance of the pendulum.

  • PDF

Angle and Position Control of Inverted Pendulum on a Cart Using Partial Feedback Linearization

  • Yeom, Dong-Hae;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1382-1386
    • /
    • 2003
  • In this paper, we propose a controller for the position of a cart and the angle of a pendulum. To achieve both purposes simultaneously, we divide the system into the dominant subsystem and the dominated one after partial feedback linearization. The proposed controller is composed of a nonlinear controller stabilizing the dominant subsystem and a linear quadratic controller. Using the proposed controller, the controllable region is increased by the nonlinear control part and the control input minimized by the linear control part (LQR).

  • PDF

FPGA를 이용한 범용 모션 컨트롤러의 개발 (Development of a General Purpose Motion Controller Using a Field Programmable Gate Array)

  • 김성수;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.73-80
    • /
    • 2004
  • We have developed a general purpose motion controller using an FPGA(Field Programmable Gate Array). The multi-PID controllers and GUI are implemented as a system-on-chip for multi-axis motion control. Comparing with the commercial motion controller LM 629, since it has multi-independent PID controllers, we have several advantages such as space effectiveness, low cost and lower power consumption. In order to test the performance of the proposed controller, motion of the robot hand is controlled. The robot hand has three fingers with 2 joints each. Finger movements show that tracking was very effective. Another experiment of balancing an inverted pendulum on a cart has been conducted to show the generality of the proposed FPGA PID controller. The controller has well maintained the balance of the pendulum.

ANFIS를 이용한 수평회전형 도립진자의 제어 (Control of Rotary Inverted Pendulum using ANFIS)

  • 민현기;유창완;고재호;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.681-683
    • /
    • 1998
  • Fuzzy Inference System is to trans late and be concrete with human expert in to mathematical equation. It is easy to be applied for Nonlinear System and the know ledge can be applied at that. With using the rule according to the Knowledge, when it is realized simulations must be required repeatedly and small vibration is generated in steady state, too. In this paper, we applied the system to the methodology of optimization with self-learn ing by us ing ANFIS(Adaptive Network-based Fuzzy Inference System) which makes use of back-propagation and least square method at a first order Sugeno Fuzzy System. In order to show the effect of Algorithm, we demonstrated it by us ing Rotary Inverted Pendulum.

  • PDF

도립진자 시스템의 뉴로-퍼지 제어에 관한 연구 (A Study on the Neuro-Fuzzy Control for an Inverted Pendulum System)

  • 소명옥;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.11-19
    • /
    • 1996
  • Recently, fuzzy and neural network techniques have been successfully applied to control of complex and ill-defined system in a wide variety of areas, such as robot, water purification, automatic train operation system and automatic container crane operation system, etc. In this paper, we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feedforward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand, feedforward neural networks provide salient features, such as learning and parallelism. In the proposed neuro-fuzzy controller, the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error backpropagation algorithm as a learning rule, while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally, the effectiveness of the proposed controller is verified through computer simulation of an inverted pendulum system.

  • PDF