• Title/Summary/Keyword: Inverse-Synthetic Aperture Radar(ISAR) Image

Search Result 37, Processing Time 0.023 seconds

3-D Multiple-Input Multiple-Output Interferometric ISAR Imaging (3차원 Multiple-Input Multiple-Output 간섭계 ISAR 영상형성기법)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Yang, Eun-Jung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.564-571
    • /
    • 2015
  • In this paper, we propose a multiple-input, multiple-output(MIMO) interferometric radar network system to generate three-dimensional (3-D) MIMO interferometric inverse synthetic aperture radar(InISAR) image. In the MIMO interferometric radar network system, the MIMO InISAR image can be formed by an incoherent summation of multiple bistatic InISAR images that show 3-D scatterers of a target observed at different bistatic interfermetric configurations, respectively. Because bistatic-sccattering physics of a target at different viewpoints are visible in the 3-D MIMO InISAR image, it can provide various scatterering physics properties of a target, and can be used for target classification as a useful feature vector. Simulations validate that our proposed method successfully finds locations of scatterers of a target in MIMO radar interferometric network system.

Efficient Fusion Method to Recognize Targets Flying in Formation (편대비행 표적식별을 위한 효과적인 ISAR 영상 합성 방법)

  • Kim, Min;Kang, Ki-Bong;Jung, Joo-Ho;Kim, Kyung-Tae;Park, Sang-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.758-765
    • /
    • 2016
  • This paper proposes a novel method for the recognition of the inverse synthetic aperture radar(ISAR) image of multiple targets flying in formation. Rather than separating the ISAR image of each target, the proposed method combines an ISAR image obtained by fusing the ISAR images in the training database. Fusion is conducted by optimizing the non-linear problem whose parameters are the aspect angle and the target location. Assuming that the aspect angle is properly estimated, the proposed method estimates the number of the targets and their locations by optimizing the template matching using PSO. In simulations using the F-16 scale model, the efficiency of the proposed method was demonstrated by yielding the ISAR image identical to that of targets in formation.

Inverse Synthetic Aperture Radar Imaging Using Stepped Chirp Waveform (계단 첩 파형(Stepped Chirp Waveform)을 이용한 ISAR 영상 형성)

  • Lee, Seong-Hyeon;Kang, Min-Suk;Park, Sang-Hong;Shin, Seung-Yong;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.930-937
    • /
    • 2014
  • Inverse synthetic aperture radar (ISAR) images can be generated by radar which radiates the electromagnetic wave to a target and receives signal reflected from the target. ISAR images can be widely used to target detection and recognition. This paper proposed a method of generation of high resolution ISAR images by synthesizing frequency spectrums of each stepped chirp waveform in one burst and sub-sampling in frequency domain. This process is performed over entire bursts during coherent processing interval. Conventional ISAR image generation method using stepped frequency waveform has a severe problem of short unambiguous range, loading to ghost phenomenon. However, this problem can be resolved by the proposed method. In simulations, we generate high resolution ISAR image of the moving target which is Boeing-737 aircraft model composed of several ideal point scatterers.

Improvement of Radar Images Using Time-Frequency Transform (시간-주파수 영역 해석법을 이용한 레이더 영상 품질 개선에 대한 연구)

  • Jung, Sang-Won;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • In this paper, an efficient algorithm is developed to perform target rotational motion compensation to achieve the clear inverse synthetic aperture radar(ISAR) image. The algorithm is based on a time-frequency technique. This algorithm provides an efficient method to resolve the blurring image caused by the time-varying behavior of the target scattering centers and leads to a well-focused ISAR image. Results demonstrate that the time-frequency techniques can improve the blurring ISAR image when an aircraft is in complex motion, such as maneuvering, rotation and acceleration.

A Study on RCS and Scattering Point Analysis Based on Measured Data for Maritime Ship (실측자료 기반 함정 RCS 측정 및 산란점 분석 연구)

  • Jung, Hoi-In;Park, Sang-Hong;Choi, Jae-Ho;Kim, Kyung-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.97-105
    • /
    • 2020
  • In order to set up radar cross section(RCS) reduction factors for a target, the scattering point position of the target should be identified through inverse synthetic aperture radar(ISAR) image analysis. For this purpose, ISAR image focusing is important. Maritime ship is non-linear maneuvering in the sea, however, which blur the ISAR image. To solve this problem, translational and rotational motion compensation are essential to form focused ISAR image. In this paper, hourglass and ISAR image analysis are performed on the collected data in the sea instead of using the prediction software tool, which takes much time and cost to make computer-aided design(CAD) model of the ship.

ISAR Imaging of Airplane-like Targets by Matrix Pencil Method (Matrix Pencil 방법에 의한 비행기 모형의 ISAR 영상화)

  • 유지희;권경일;이용희
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.2
    • /
    • pp.299-307
    • /
    • 2001
  • This paper presents a experimental study of Inverse Synthetic Aperture Radar(ISAR) imaging using Matrix Pencil(MP) method. A series of measurement for two types of target model was done in a Compact Range(CR)facility. The first target is a set of distributed slim cylinders to get a ISAR image of point-like scatterers. The second is UAV model representing a complex real target. The results show that ISAR images by MP method are better than by conventional FFT method under the realistic measurement conditions.

  • PDF

ISAR Cross-Range Scaling for a Maneuvering Target (기동표적에 대한 ISAR Cross-Range Scaling)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1062-1068
    • /
    • 2014
  • In this paper, a novel approach estimating target's rotation velocity(RV) is proposed for inverse synthetic aperture radar(ISAR) cross-range scaling(CRS). Scale invariant feature transform(SIFT) is applied to two sequently generated ISAR images for extracting non-fluctuating scatterers. Considering the fact that the distance between target's rotation center(RC) and SIFT features is same, we can set a criterion for estimating RV. Then, the criterion is optimized through the proposed method based on particle swarm optimization(PSO) combined with exhaustive search method. Simulation results show that the proposed algorithm can precisely estimate RV of a scenario based maneuvering target without RC information. With the use of the estimated RV, ISAR image can be correctly re-scaled along the cross-range direction.

Radar Target Recognition Using a Fusion of Monostatic/Bistatic ISAR Images (모노스태틱/바이스태틱 ISAR 영상 융합을 통한 표적식별 연구)

  • Cha, Sang-Bin;Yoon, Se-Won;Hwang, Seok-Hyun;Kim, Min;Jung, Joo-Ho;Lim, Jin-Hwan;Park, Sang-Hong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.93-100
    • /
    • 2018
  • Inverse Synthetic Aperture Radar(ISAR) image is 2-dimensional radar cross section distributions of a target. For target approaching along radar's line of sight(LOS), the bistatic ISAR can compensate for the weakness of the monostatic ISAR which can not obtain the vertical resolution of the image. However, bistatic ISAR have longer processing times and variability in scattering mechanisms than monostatic ISAR, so target identification using only bistatic ISAR images can be inefficient. Therefore, this paper analyzes target identification performance using monostatic and bistatic ISAR images of targets approaching along radar's LOS and proposes a method of target identification through fusion of two radars. Simulation results demonstrate that identification performance through fusion is more efficient than identification performance using only monostatic, bistatic ISAR images.

Comparisons of ISAR Imaging Methods for Maritime Targets with Real Measured Radar Data (해상 표적의 실제 레이다 측정 데이터를 이용한 ISAR 영상 형성 기법 성능 비교)

  • Kang, Byung-Soo;Lee, Myung-Jun;Ryu, Bo-Hyun;Baek, Jin-Hyeok;Kim, Chan-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.740-748
    • /
    • 2017
  • In this paper, we compared performance of conventional inverse synthetic aperture radar(ISAR) imaging methods for maritime target with real data measured by X-band radar. Following conventional approaches were used for performance comparisons: 1) range instantaneous Doppler(RID) method, 2) range Doppler(RD) processing with phase adjustment, and 3) RD processing with prominent point processing(PPP). It is noteworthy that the comparison results have significance of providing basic concept to establish ISAR imaging frame work for maritime targets.

A Study on ISAR Imaging Algorithm for Radar Target Recognition (표적 구분을 위한 ISAR 영상 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.294-303
    • /
    • 2008
  • ISAR(Inverse Synthetic Aperture Radar) images represent the 2-D(two-dimensional) spatial distribution of RCS (Radar Cross Section) of an object, and they can be applied to the problem of target identification. A traditional approach to ISAR imaging is to use a 2-D IFFT(Inverse Fast Fourier Transform). However, the 2-D IFFT results in low resolution ISAR images especially when the measured frequency bandwidth and angular region are limited. In order to improve the resolution capability of the Fourier transform, various high-resolution spectral estimation approaches have been applied to obtain ISAR images, such as AR(Auto Regressive), MUSIC(Multiple Signal Classification) or Modified MUSIC algorithms. In this study, these high-resolution spectral estimators as well as 2-D IFFT approach are combined with a recently developed ISAR image classification algorithm, and their performances are carefully analyzed and compared in the framework of radar target recognition.