• Title/Summary/Keyword: Inverse technique

Search Result 607, Processing Time 0.03 seconds

Image Super Resolution Based on Interpolation of Wavelet Domain High Frequency Subbands and the Spatial Domain Input Image

  • Anbarjafari, Gholamreza;Demirel, Hasan
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.390-394
    • /
    • 2010
  • In this paper, we propose a new super-resolution technique based on interpolation of the high-frequency subband images obtained by discrete wavelet transform (DWT) and the input image. The proposed technique uses DWT to decompose an image into different subband images. Then the high-frequency subband images and the input low-resolution image have been interpolated, followed by combining all these images to generate a new super-resolved image by using inverse DWT. The proposed technique has been tested on Lena, Elaine, Pepper, and Baboon. The quantitative peak signal-to-noise ratio (PSNR) and visual results show the superiority of the proposed technique over the conventional and state-of-art image resolution enhancement techniques. For Lena's image, the PSNR is 7.93 dB higher than the bicubic interpolation.

Sensitive NDE of Small Fatigue Cracks

  • Saka, Masumi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.22-31
    • /
    • 2001
  • Some techniques developed recently for sizing smalt fatigue cracks are described. One is an ultrasonic technique which deals with a small closed crack, where both the stress closing the crack and the crack size are determined by analyzing inverse problem. Here, difficulties encountered in NDE of closed cracks by usual ultrasonic techniques are summarized in advance. Secondly, the closely coupled probes potential drop (CCPPD) technique, which is based on d-c potential drop measurement, is explained fur sizing small cracks. The CCPPD technique is not affected by crack closure. Finally, a discussion is given on NDE of materials degradation in conjunction with sensitive NDE of small cracks.

  • PDF

Detection of a concentrated damage in a parabolic arch by measured static displacements

  • Greco, Annalisa;Pau, Annamaria
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.751-765
    • /
    • 2011
  • The present paper deals with the identification of a concentrated damage in an elastic parabolic arch through the minimization of an objective function which measures the differences between numerical and experimental values of static displacements. The damage consists in a notch that reduces the height of the cross section at a given abscissa and therefore causes a variation in the flexural stiffness of the structure. The analytical values of static displacements due to applied loads are calculated by means of the principle of virtual work for both the undamaged and damaged arch. First, pseudo-experimental data are used to study the inverse problem and investigate whether a unique solution can occur or not. Various damage intensities are considered to assess the reliability of the identification procedure. Then, the identification procedure is applied to an experimental case, where displacements are measured on a prototype arch. The identified values of damage parameters, i.e., location and intensity, are compared to those obtained by means of a dynamic identification technique performed on the same structure.

EIT imaging with the projection filter

  • Kim, Bong-Seok;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.396-401
    • /
    • 2003
  • Electrical impedance tomography(EIT) is a relatively new imaging modality in which the internal impedivity distribution is reconstructed based on the known sets of injected currents and measured voltages on the surface of the object. In this paper, an effective dynamic EIT imaging scheme is presented based on the projection filtering to estimate the unknown resistivity distribution. In particular, pre-integration (pre-grouping) technique is employed to stabilize the inverse algorithm. We carried out computer simulations with synthetic data to illustrate the reconstruction performance of the proposed algorithm.

  • PDF

A Term Importance-based Approach to Identifying Core Citations in Computational Linguistics Articles

  • Kang, In-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.17-24
    • /
    • 2017
  • Core citation recognition is to identify influential ones among the prior articles that a scholarly article cite. Previous approaches have employed citing-text occurrence information, textual similarities between citing and cited article, etc. This study proposes a term-based approach to core citation recognition, which exploits the importance of individual terms appearing in in-text citation to calculate influence-strength for each cited article. Term importance is computed using various frequency information such as term frequency(tf) in in-text citation, tf in the citing article, inverse sentence frequency in the citing article, inverse document frequency in a collection of articles. Experiments using a previous test set consisting of computational linguistics articles show that the term-based approach performs comparably with the previous approaches. The proposed technique could be easily extended by employing other term units such as n-grams and phrases, or by using new term-importance formulae.

A Robust Watermarking Technique Using Affine Transform and Cross-Reference Points (어파인 변형과 교차참조점을 이용한 강인한 워터마킹 기법)

  • Lee, Hang-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.615-622
    • /
    • 2007
  • In general, Harris detector is commonly used for finding salient points in watermarking systems using feature points. Harris detector is a kind of combined comer and edge detector which is based on neighboring image data distribution, therefore it has some limitation to find accurate salient points after watermark embedding or any kinds of digital attacks. In this paper, we have used cross reference points which use not data distribution but geometrical structure of a normalized image in order to avoid pointing error caused by the distortion of image data. After normalization, we find cross reference points and take inverse normalization of these points. Next, we construct a group of triangles using tessellation with inversely normalized cross reference points. The watermarks are affine transformed and transformed-watermarks are embedded into not normalized image but original one. Only locations of watermarks are determined on the normalized image. Therefore, we can reduce data loss of watermark which is caused by inverse normalization. As a result, we can detect watermarks with high correlation after several digital attacks.

N-gram Feature Selection for Text Classification Based on Symmetrical Conditional Probability and TF-IDF (대칭 조건부 확률과 TF-IDF 기반 텍스트 분류를 위한 N-gram 특질 선택)

  • Choi, Woo-Sik;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.4
    • /
    • pp.381-388
    • /
    • 2015
  • The rapid growth of the World Wide Web and online information services has generated and made accessible a huge number of text documents. To analyze texts, selecting important keywords is an essential step. In this paper, we propose a feature selection method that combines a term frequency-inverse document frequency technique and symmetrical conditional probability. The proposed method can identify features with N-gram, the sequential multiword. The effectiveness of the proposed method is demonstrated through a real text data from the machine learning repository, University of California, Irvine.

DATA MINING AND PREDICTION OF SAI TYPE MATRIX PRECONDITIONER

  • Kim, Sang-Bae;Xu, Shuting;Zhang, Jun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.351-361
    • /
    • 2010
  • The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods are considered the preferred methods. Selecting a suitable preconditioner with appropriate parameters for a specific sparse linear system presents a challenging task for many application scientists and engineers who have little knowledge of preconditioned iterative methods. The prediction of ILU type preconditioners was considered in [27] where support vector machine(SVM), as a data mining technique, is used to classify large sparse linear systems and predict best preconditioners. In this paper, we apply the data mining approach to the sparse approximate inverse(SAI) type preconditioners to find some parameters with which the preconditioned Krylov subspace method on the linear systems shows best performance.

Composite adaptive neural network controller for nonlinear systems (비선형 시스템제어를 위한 복합적응 신경회로망)

  • 김효규;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.14-19
    • /
    • 1993
  • In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.

  • PDF

Image Reconstruction with Prior Information in Electrical Resistance Tomography

  • Kim, Bong Seok;Kim, Sin;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.8-18
    • /
    • 2014
  • Electrical resistance tomography (ERT) has high temporal resolution characteristics therefore it is used as an alternative technique to visualize two-phase flows. The image reconstruction in ERT is highly non-linear and ill-posed hence it suffers from poor spatial resolution. In this paper, the inverse problem is solved with homogeneous data used as a prior information to reduce the condition number of the inverse algorithm and improve the spatial resolution. Numerical experiments have been carried out to illustrate the performance of the proposed method.