• Title/Summary/Keyword: Inverse pole figure

Search Result 7, Processing Time 0.018 seconds

Application of Inverse Pole Figure to Rietveld Refinement: II. Rietveld Refinement of Tungsten Liner using Neutron Diffraction Data

  • Kim, Yong-Il;Lee, Jeong-Soo;Jung, Maeng-Joon;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.240-244
    • /
    • 2000
  • The three-dimensional orientation distribution function of a conical shaped tungsten liner prepared by the thermo-mechanical forming process was analyzed by 1.525$\AA$ neutrons to carry out the Rietveld refinement. The pole figure data of three reflections, (110)(220) and (211) were measured. The orientation distribution functions for the normal and radial directions were calculated by the WIMV method. The inverse pole figures of the normal and radial directions were obtained from their orientation distribution functions. The Rietveld refinement was performed with the RIETAN program that was slightly modified for the description of preferred orientation effect. We could successfully do the Rietveld refinement of the strongly textured tungsten liner by applying the pole density of each reflection obtained from the inverse pole figure to the calculated diffraction pattern. The correction method of preferred orientation effect based on the inverse pole figures showed a good improvement over the semi-empirical texture correction based on the direct usage of simple empirical functions.

  • PDF

Application of Inverse Pole Figure to Rietveld Refinement: I. Rietveld Refinement of Copper Sheet using X-ray Diffraction Data

  • Kim, Yong-Il;Jung, Maeug-Joon;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.236-239
    • /
    • 2000
  • Both the X-ray diffraction data of the normal direction in the sample orientation and the pole figure data of three reflections, (111), (200) and (220), were used to do the Rietveld refinement for the copper sheet prepared by a cold rolling process. The agreement between calculated and observed patterns was not satisfactory, which was attributed to the preferred orientation effect of the copper sheet. The Rietveld refinement for the copper sheet could be done successfully by applying the pole density of each reflection obtained from the corresponding inverse pole figure to the X-ray diffraction data of the normal direction. The R-weighted pattern, $R_{wp}$ was 12.99% and the goodness-of-fit indicator, S, was 3.68.

  • PDF

Application of Inverse Pole Figure to Rietveld Refinement: III. Rietveld Refinement of $SnO_2$ Thin Film using X-ray Diffraction Data

  • Kim, Yong-Il;Jung, Maeng-Joon;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.354-358
    • /
    • 2000
  • The SnO$_2$film was deposited on a corning glass 1737 substrate by plasma enhanced chemical vapor deposition using a gas mixture of SnCl$_4$, $O_2$, and Ar. The film thickness was measured using $\alpha$-step and was about 9400$\AA$. The conventional X-ray diffractometry and pole figure attachment were used to refine the crystal structure of SnO$_2$ thin film. Six pole figures, (200), (211), (310), (301), (321), and (411), were measured with CoK$_\alpha$ radiation in reflection geometry. The X-ray diffraction data were measured at room temperature using CuK$_\alpha$ radiation with graphite monochromator. The agreement between calculated and observed patterns for the normal direction of SnO$_2$ thin film was not satisfactory due to the severely preferred orientation effect. The Rietveld refinement of heavily textured SnO$_2$ thin film was successfully achieved by adopting the pole density distribution of each reflection obtained from the inverse pole figure as a correction factor for the preferred orientation effect. The R-weighted pattern, R$_wp$, was 15.30%.

  • PDF

Microstructure Characteristics and Identification of Low-Carbon Steels Fabricated by Controlled Rolling and Accelerated Cooling Processes (제어 압연과 가속 냉각에 의해 저탄소강에서 형성되는 미세조직의 특징과 구분)

  • Lee, Sang-In;Hong, Tae-Woon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.636-642
    • /
    • 2017
  • In the present study the microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes was characterized and identified based on various microstructure analysis methods including optical and scanning electron microscopy, and electron backscatter diffraction(EBSD). Although low-carbon steels are usually composed of ${\alpha}-ferrite$ and cementite($Fe_3C$) phases, they can have complex microstructures consisting of ferrites with different size, morphology, and dislocation density, and secondary phases dependent on rolling and accelerated cooling conditions. The microstructure of low-carbon steels investigated in this study was basically classified into polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite based on the inverse pole figure, image quality, grain boundary, kernel average misorientation(KAM), and grain orientation spread(GOS) maps, obtained from EBSD analysis. From these results, it can be said that the EBSD analysis provides a valuable tool to identify and quantify the complex microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes.

Study of the Microstructural Evolution of Tempered Martensite Ferritic Steel T91 upon Ultrasonic Nanocrystalline Surface Modification

  • He, Yinsheng;Yang, Cheol-Woong;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.170-176
    • /
    • 2015
  • In this work, various electron microscopy and analysis techniques were used to investigate the microstructural evolution of a 9% Cr tempered martensite ferritic (TMF) steel T91 upon ultrasonic nanocrystalline surface modification (UNSM) treatment. The micro-dimpled surface was analyzed by scanning electron microscopy. The characteristics of plastic deformation and gradient microstructure of the UNSM treated specimens were clearly revealed by crystal orientation mapping of electron backscatter diffraction (EBSD), with flexible use of the inverse pole figure, image quality, and grain boundary misorientation images. Transmission electron microscope (TEM) observation of the specimens at different depths showed the formation of dislocations, dense dislocation walls, subgrains, and grains in the lower, middle, upper, and top layers of the treated specimens. Refinement of the $M_{23}C_6$ precipitates was also observed, the size and the number density of which were found to decrease as depth from the top surface decreased. The complex microstructure and microstructural evolution of the TMF steel samples upon the UNSM treatment were well-characterized by combined use of EBSD and TEM techniques.

Effects of the Precipitation of Carbides and Nitrides on the Textures in Extra Low Carbon Steel Sheets containing B, Nb and Ti(l) (B,Nb 및 Ti 를 함유한 극저탄소강에서 탄화물 및 질화물의 석출이 집합조직에 미치는 영향(I)-집합조직과 기계적 성질-)

  • Lee, Jong-Mu;Yoon, Kuk-Hoon;Lee, Do-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.43-49
    • /
    • 1993
  • Excellent deep drawability and strain aging rsistance are obtained by the addition of alloying elements such as Ti and Nb which can form carbide and nitride easily into Al killed extra low carbon steel. Recrystallization textures and mechanical properties of the three different extra low carbon steels with B containing Nb only, Ti only, and both Nb and Ti, respectively, along with have been compared. Inverse pole figure shows that (100) and (111) texture intensities of Nb containing steel changed a lot during the annealing treatment and the degree of texture-structural change in the steel containing both Nb and Ti is about the same as that in the Ti-containing 5teel. After annealing the pole figure shows that the {Ill} < 110 > and {112} < 110> textures are the strongest in the cold rolled state and the annealed state, respectively. However, there is little difference in texture structure among the three kinds of steels. There is a tendency that the steel containing both Nb and Ti the grain size of which is the smallest is the highest in hardness. Nb-containing steel is the next and Ti -containing steel is the last in hardness.

  • PDF

Study on VHCF Fatigue Behaviors and UNSM Effects of Hydrogen Attacked STS 316L (수소취화된 스테인리스강 316L의 VHCF(Very High Cycle Fatigue) 피로특성과 UNSM 효과에 관한 연구)

  • Nahm, Seung-Hoon;Baek, Un-Bong;Suh, Chang-Min;Pyun, Young-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1011-1020
    • /
    • 2017
  • This study was conducted to investigate the material properties of stainless steel 316L specimens of untreated and UNSM treated material, hydrogen attacked material(100 bar, $300^{\circ}C$ at 120 h) and UNSM treated hydrogen attacked material at room temperature. Results demonstrated that the hydrogen attacked materials showed a tendency toward a slightly decreased fatigue strength, while the hydrogen embrittlement effect was smaller than the S-N curve of conventional untreated material. As compared to untreated material, the fatigue limit of the UNSM treated material increased by 43.8%, while it was 57.1% higher in the UNSM treated hydrogen attacked material than in untreated hydrogen attacked material. The plastic deformation layer was ${\sim}152{\mu}m$ thick, as confirmed by maps showing the level of local plastic deformation affected by the UNSM treatment in three ways: an image quality map, inverse pole figure map, and kernel average misorientation map captured via electron back scatter diffraction. Owing to hydrogen embrittlement, about 90% of surface cracks were smaller than the average grain size of $35{\mu}m$.