• Title/Summary/Keyword: Inverse Synthetic Aperture Radar(ISAR) Imaging

Search Result 26, Processing Time 0.028 seconds

ISAR Imaging of a Real Aircraft Using KOMSAR (KOMSAR를 이용한 실제 항공기 ISAR 영상 제작)

  • Kim, Kyung-Tae;Jeong, Ho-Ryung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.717-722
    • /
    • 2007
  • Inverse synthetic aperture radar(ISAR) images represent two-dimensional(2-D) spatial distribution of electromagnetic scattering phenomenology against a target. Hence, they are usually used in the areas of automatic target recognition (ATR) or non-cooperative target recognition(NCTR), identifying a target using radar in a long distance. This paper makes use of Korea Miniature Synthetic Aperture Radar(KOMSAR) to generate ISAR images of a real and maneuvering aircraft. The data obtained from KOMSAR are processed to eliminate phase errors due to motion of a target, with the use of entropy-based ISAR autofocusing technique. Results show that we can successfully obtain ISAR images of a real aircraft, and the success of experiments implies that a significant step toward ATR using radar has been established.

Comparisons of ISAR Imaging Methods for Maritime Targets with Real Measured Radar Data (해상 표적의 실제 레이다 측정 데이터를 이용한 ISAR 영상 형성 기법 성능 비교)

  • Kang, Byung-Soo;Lee, Myung-Jun;Ryu, Bo-Hyun;Baek, Jin-Hyeok;Kim, Chan-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.740-748
    • /
    • 2017
  • In this paper, we compared performance of conventional inverse synthetic aperture radar(ISAR) imaging methods for maritime target with real data measured by X-band radar. Following conventional approaches were used for performance comparisons: 1) range instantaneous Doppler(RID) method, 2) range Doppler(RD) processing with phase adjustment, and 3) RD processing with prominent point processing(PPP). It is noteworthy that the comparison results have significance of providing basic concept to establish ISAR imaging frame work for maritime targets.

ISAR Imaging of Airplane-like Targets by Matrix Pencil Method (Matrix Pencil 방법에 의한 비행기 모형의 ISAR 영상화)

  • 유지희;권경일;이용희
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.2
    • /
    • pp.299-307
    • /
    • 2001
  • This paper presents a experimental study of Inverse Synthetic Aperture Radar(ISAR) imaging using Matrix Pencil(MP) method. A series of measurement for two types of target model was done in a Compact Range(CR)facility. The first target is a set of distributed slim cylinders to get a ISAR image of point-like scatterers. The second is UAV model representing a complex real target. The results show that ISAR images by MP method are better than by conventional FFT method under the realistic measurement conditions.

  • PDF

A Study on ISAR Imaging Algorithm for Radar Target Recognition (표적 구분을 위한 ISAR 영상 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.294-303
    • /
    • 2008
  • ISAR(Inverse Synthetic Aperture Radar) images represent the 2-D(two-dimensional) spatial distribution of RCS (Radar Cross Section) of an object, and they can be applied to the problem of target identification. A traditional approach to ISAR imaging is to use a 2-D IFFT(Inverse Fast Fourier Transform). However, the 2-D IFFT results in low resolution ISAR images especially when the measured frequency bandwidth and angular region are limited. In order to improve the resolution capability of the Fourier transform, various high-resolution spectral estimation approaches have been applied to obtain ISAR images, such as AR(Auto Regressive), MUSIC(Multiple Signal Classification) or Modified MUSIC algorithms. In this study, these high-resolution spectral estimators as well as 2-D IFFT approach are combined with a recently developed ISAR image classification algorithm, and their performances are carefully analyzed and compared in the framework of radar target recognition.

3-D Multiple-Input Multiple-Output Interferometric ISAR Imaging (3차원 Multiple-Input Multiple-Output 간섭계 ISAR 영상형성기법)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Yang, Eun-Jung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.564-571
    • /
    • 2015
  • In this paper, we propose a multiple-input, multiple-output(MIMO) interferometric radar network system to generate three-dimensional (3-D) MIMO interferometric inverse synthetic aperture radar(InISAR) image. In the MIMO interferometric radar network system, the MIMO InISAR image can be formed by an incoherent summation of multiple bistatic InISAR images that show 3-D scatterers of a target observed at different bistatic interfermetric configurations, respectively. Because bistatic-sccattering physics of a target at different viewpoints are visible in the 3-D MIMO InISAR image, it can provide various scatterering physics properties of a target, and can be used for target classification as a useful feature vector. Simulations validate that our proposed method successfully finds locations of scatterers of a target in MIMO radar interferometric network system.

Inverse Synthetic Aperture Radar Imaging Using Stepped Chirp Waveform (계단 첩 파형(Stepped Chirp Waveform)을 이용한 ISAR 영상 형성)

  • Lee, Seong-Hyeon;Kang, Min-Suk;Park, Sang-Hong;Shin, Seung-Yong;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.930-937
    • /
    • 2014
  • Inverse synthetic aperture radar (ISAR) images can be generated by radar which radiates the electromagnetic wave to a target and receives signal reflected from the target. ISAR images can be widely used to target detection and recognition. This paper proposed a method of generation of high resolution ISAR images by synthesizing frequency spectrums of each stepped chirp waveform in one burst and sub-sampling in frequency domain. This process is performed over entire bursts during coherent processing interval. Conventional ISAR image generation method using stepped frequency waveform has a severe problem of short unambiguous range, loading to ghost phenomenon. However, this problem can be resolved by the proposed method. In simulations, we generate high resolution ISAR image of the moving target which is Boeing-737 aircraft model composed of several ideal point scatterers.

A Study on the Rotational Motion Compensation Method for ISAR Imaging (ISAR 영상 형성을 위한 회전운동보상 기법 연구)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Chung, Sung-Eun;Kim, Chan-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • In this paper, we propose a inverse synthetic aperture radar(ISAR) rotational motion compensation(RMC) method to remove residual blurring caused by non-uniform rotational motion of a target. First, a range bin having an isolated scatterer is selected. Next, polynomial phase signal in the selected range bin is estimated by using both Fourier transform(FT) and polynomial-phase transform(PPT). Finally, a new slow time variable that uniformly samples radar signal along the aspect angle directions is defined by using the estimated phase signal, and we interpolate radar signal in terms of the new time variable. As a result, rotational motion to blurr ISAR images is removed, and focused ISAR images are obtained. Simulation results using battleship model validate the robustness and effectiveness of our proposed RMC method.

ISAR Imaging Using Rear View Radars of an Automobile (후방 감시 차량용 레이다를 이용한 ISAR 영상 형성)

  • Kang, Byung-Soo;Lee, Hyun-Seok;Lee, Seung-Jae;Kang, Min-Suk;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.245-250
    • /
    • 2014
  • This paper introduces the inverse synthetic aperture radar(ISAR) imaging technique for rear view target of an automobile, which uses both linear frequency modulation-frequency shift keying(LFM-FSK) waveform and monopulse tracking. LFM-FSK waveform consists of two sequential stepped frequency waveforms with some frequency offset, and thus, can be used to generate ISAR images of rear view target of an automobile. However, ISAR images can often be blurred due to non-uniform change rate of relative aspect angle between radar and target. In order to address this problem, one-dimensional(1-D) Lagrange interpolation technique in conjunction with angle information obtained from the monopulse tracking is applied to generate uniform data across the radar's aspect angle. Simulation results show that the proposed method can provide focused ISAR images.

Study of Rotational Motion Compensation Method Based on PPP for ISAR Imaging (ISAR 영상 형성을 위한 PPP 기반 회전운동 보상기법 연구)

  • Kang, Ki-Bong;Park, Sang-Hong;Kang, Byung-Soo;Ryu, Bo-Hyun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.109-117
    • /
    • 2018
  • In order to form focused inverse synthetic aperture radar(ISAR) images of a non-uniformly rotating target, rotational motion compensation(RMC) should be performed. Prominent point processing(PPP), one of the most representative RMC methods, is used to compensate nonlinear rotation motion by exploiting the phase signals of scatterers. In this paper, we propose a new RMC method based on the integrated cubic phase function(ICPF). The ICPF requires only one-dimensional(1-D) maximization to estimate the phases of multi-component signals. Simulation results using a point scatterers model in the absence of dominant scatterers validate that PPP based on ICPF can achieve well-focused ISAR images in real time.

Simulation of Bistatic Inverse Synthetic Aperture Radar Image Generation (바이스태틱 ISAR 영상 생성 시뮬레이션)

  • Han, Seung-Ku;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.451-458
    • /
    • 2014
  • This paper introduces a bistatic ISAR imaging technique. In bistatic geometry, the transmitter and receiver are placed in different locations. The monostatic ISAR is inadequate not only for obtaining images on targets approaching along the radar's line of sight, but also for stealth targets. In this paper, geometry, signal modeling as well as bistatic Doppler for bistatic ISAR are introduced to address these problems. Simulations results show bistatic ISAR images as well as monostatic ISAR images against target's moving scenarios, and analyze their differences for each scenario.