• Title/Summary/Keyword: Inverse Spinel Structure

Search Result 24, Processing Time 0.048 seconds

Structural, Magnetic, and Optical Studies on Normal to Inverse Spinel Phase Transition in FexCo3-xO4 Thin Films

  • Kim, Kwang-Joo;Kim, Hee-Kyung;Park, Young-Ran;Ahn, Geun-Young;Kim, Chul-Sung;Park, Jae-Yun
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.96-99
    • /
    • 2005
  • Phase transition from normal- to inverse-spinel structure has been observed for $Fe_xCo_{3-x}O_4$ thin films as the Fe composition (x) increases from 0 to 2. The samples were fabricated as thin films by sol-gel method on Si(100) substrates. X-ray diffraction measurements revealed a coexistence of two phases, normal and inverse spinel, for $0.76{\le}x{\le}0.93$. The normal-spinel phase is dominant for $x{\le}0.55$ while the inverse-spinel phase for $x{\ge}l.22$. The cubic lattice constant of the inverse-spinel phase is larger than that of the normal-spinel phase. For both phases the lattice constant increases with increasing x. X-ray photoelectron spectroscopy measurements revealed that both $Fe^{2+}$ and $Fe^{3+}$ ions exist with similar strength in the x=0.93 sample. Conversion electron $M\ddot{o}ssbauer$ spectra measured on the same sample showed that $Fe^{2+}$ ions prefer the octahedral $Co^{3+}$ sites, indicating the formation of the inverse-spinel phase. Analysis on the measured optical absorption spectra for the samples by spectroscopic ellipsometry indicates the dominance of the normal spinel phase for low x in which $Fe^{3+}$ ions tend to substitute the octahedral sites.

Mossbauer Study for the Cation Distribution of Co-ferrite (CoxFe1-xO4) Thin Films (Co-ferrite 박막에서 양이온 거동에 관한 Mössbauer 분광 연구)

  • Park, Jae-Yun;Park, Young-Ran;Kim, Hee-Kyung;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • The crystallographic properties and cation distribution of oxyspinels ferrite $Co_xFe_{1-x}O_4$ thin films have been explored by X-ray diffraction, vibrating sample magnetometer (VSM), and conversion electron $M\"{o}ssbauer$ spectroscopy (CEMS). Thin films are prepared by sol-gel method. Normal spinel structure is transformed to inverse spinel structure with increasing Co concentration CEMS results indicate that most of $Fe^{3+}$ ions are substituted to $Co^{3+}$ions. Accordingly $Co^{2+}$ ions on octahedral site migrate to tetrahedral site. Magnetic moment is decreased with increasing Co concentration, which means high spin $Fe^{3+}$ ions are replaced by low spin $Co^{3+}$.

Cathodoluminescence of $Mg_2$$SnO_4$:Mn,:Mn Green Phosphor under Low-Voltage Electron Excitation ($Mg_2$$SnO_4$:Mn 녹색 형광체의 저전압 음극선 발광 특성)

  • Kim, Gyeong-Nam;Jeong, Ha-Gyun;Park, Hui-Dong;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.759-762
    • /
    • 2001
  • Mg$_2$SnO$_4$having an inverse spinel structure was selected as a new host material of $Mn^{2+}$ activator. The luminescence of the $Mg_2$SnO$_4$:Mn phosphor prepared by the solid-state reaction were investigated under ultraviolet and low-voltage electron excitation. The Mn-doped magnesium tin oxide exhibited strong green emission with the spectrum centered at 500nm wavelength. It was explained that the green emission in $Mg_2$SnO$_4$:Mn phosphor is due to energy transfer from $^4T_1to ^6A_1\;of\; Mn^{2+}$ ion at tetrahedral site in the spinel structure. The optimum concentration of $Mn^{2+}$/ion exhibiting maximum emission intensity by the low-voltage electron excitation was 0.6mol%. ?

  • PDF

The Study of Magnetic Structure of Ni1-xMgxFe2O4 Ferrite System by Mössbauer Spectroscopy (Mössbauer 분광법에 의한 Ni1-xMgxFe2O4 Ferrite의 자기구조 연구)

  • Yoon, In-Seop;Baek, Seung-Do
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.106-112
    • /
    • 2009
  • $Ni_{1-x}Mg_xFe_2O_4$ ferrite system was studied by using X-ray diffraction and $M{\ddot{o}}ssbauer$ spectroscopy. The samples were prepared by ceramic sintering method with Mg content x. The X-ray diffraction patterns of samples show phase of cubic spinel structure. There are no remarkable changes of lattice constants in $Ni_{1-x}Mg_xFe_2O_4$ ferrite system. The $M{\ddot{o}}ssbauer$ spectra were consisted of two sets of six lines, respectively, corresponding to $Fe^{3+}$ at tetrahedral and octahedral sites. The magnetic hyperfine field of samples was decreased as increasing Mg contents x in both sites and it was shown Yafet-Kittel magnetic structure. $NiFe_2O_4$ was shown complete inverse spinel, but $NiFe_2O_4$ was shown partial inverse spinel which absorption area ratio (oct/tet) was 1.449 in $M{\ddot{o}}ssbauer$ spectrum.

Titanium Incorporation in (Znl-xNix)2TiO4 Spinel Ceramics (티타늄 합침에 의한 (Znl-xNix)2TiO4 스피넬 세라믹스)

  • 강귀원;김효태;황준철;이종원;백운규
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.97-97
    • /
    • 2003
  • Composition in the (Znl-xNix)2TiO4+ yTiO2 system (x=0-0.5, y=0-0.35) were synthesized via the solid-state reaction route. The incorporation of titanium, in the form of TiO2, in (Znl-xNix)2TiO4 spinel ceramics were investigated by analyzing the crystal structure and measuring the dielectric properties. The result of the crystal structure analysis suggested that TiO2 level of 0.01 y 0.33 could be incorporated into the (Znl-xNix)2TiO4 spinel. The change of incorporated TiO2 level is related with Co-content as a inverse proportion and the variation of lattice parameter and dielectric properties were supported the result.

  • PDF

Crystal structure refinement and synthesis of $LiAl_5O_8-LiFe_5O_8$ ($LiAl_5O_8-LiFe_5O_8$ 합성과 결정구조 해석)

  • 조남웅;김찬욱;장세기;유광수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.244-252
    • /
    • 1997
  • The pseudo-spinel type solid solution, $LiAl_{2.5}/Fe_{2.5}O_8$ was prepared by reaction of $LiCO_3, Al_2O_3, Fe_2O_3$ mixture at 1620K, which can be used for cathode material in lithium batteries. Its structure was investigated by Rietveld profile-analysis of XRD in detail. The space group of solid solution is $P4_3$32(a=8.1293$\AA$) and the final residual index of structure refinement was about 5%. Cations $Al^{3+}, Fe^{3+}$ are located at both tetra- and octahedral-coordination and $Li^+$ ions are occupied in the octahedral 4b-, 12d-site of the inverse spinel.

  • PDF

Growth of Zn0.4Fe2.6O4 Thin Films using Pulsed Laser Deposition and their Crystal Structural and Magnetic Properties (Pulsed Laser Deposition을 이용한 Zn0.4Fe2.6O4 박막의 합성과 그 결정성 및 자기적 특성의 연구)

  • Jang, A.N.;Song, J.H.;Park, C.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.88-92
    • /
    • 2011
  • We grew $Zn_{0.4}Fe_{2.6}O_4$ thin films using Pulsed Laser Deposition and studied their crystal structure and magnetical characteristics as a function of growth temperature ($T_g$). For the film with $T_g=300^{\circ}C$, X-ray reflections from ${\alpha}-Fe_2O_3$ and ZnO were observed. However, when $T_g$ was increased from 300 to $500^{\circ}C$, crystal structure of inverse spinel was stabilized with the crystal orientation of $Zn_{0.4}Fe_{2.6}O_4(111)/Al_2O_3(0001)$ without any detection of ${\alpha}-Fe_2O_3$ and ZnO phases. The surface morphology shows flattening behavior with increasing $T_g$ from 300 to $500^{\circ}C$. These observations indicate that Zn is substituted into tetrahedron A-site of the inverse-spinel $Fe_3O_4$. M-H curves exhibit clear ferromagnetism for the sample with $T_g=500^{\circ}C$ whereas no ferromagnetism is observed for the film with $T_g=300^{\circ}C$.

MBE growth and magnetic properties of epitaxial FeMn2O4 film on MgO(100)

  • Duong, Van Thiet;Nguyen, Thi Minh Hai;Nguyen, Anh Phuong;Dang, Duc Dung;Duong, Anh Tuan;Nguyen, Van Quang;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.318.2-318.2
    • /
    • 2016
  • FeM2X4 spinel structures, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. Both the Fe and M ions can occupy tetrahedral and octahedral sites; therefore, these types of compounds can display various physical and chemical properties [1]. On the other hand, the electronic and magnetic properties of these spinel structures could be modified via the control of cation distribution [2, 3]. Among the spinel oxides, iron manganese oxide is one of promising materials for applications. FeMn2O4 shows inverse spinel structure above 390 K and ferrimagnetic properties below the temperature [4]. In this work, we report on the structural and magnetic properties of epitaxial FeMn2O4 thin film on MgO(100) substrate. The reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD) results indicated that films were epitaxially grown on MgO(100) without the impurity phases. The valance states of Fe and Mn in the FeMn2O4 film were carried out using x-ray photoelectron spectrometer (XPS). The magnetic properties were measured by vibrating sample magnetometer (VSM), indicating that the samples are ferromagnetic at room temperature. The structural detail and origin of magnetic ordering in FeMn2O4 will be discussed.

  • PDF

Structural Phase Transition, Electronic Structure, and Magnetic Properties of Sol-gel-prepared Inverse-spinel Nickel-ferrites Thin Films

  • Kim, Kwang Joo;Kim, Min Hwan;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM) were used to investigate the influence of Ni ions on the structural, electronic, and magnetic properties of nickel-ferrites ($Ni_xFe_{3-x}O_4$). Spinel $Ni_xFe_{3-x}O_4$ ($x{\leq}0.96$) samples were prepared as polycrystalline thin films on $Al_2O_3$ (0001) substrates, using a sol-gel method. XRD patterns of the nickel-ferrites indicate that as the Ni composition increases (x > 0.3), a structural phase transition takes place from cubic to tetragonal lattice. The XPS results imply that the Ni ions in $Ni_xFe_{3-x}O_4$ substitute for the octahedral sites of the spinel lattice, mostly with the ionic valence of +2. The minority-spin d-electrons of the $Ni^{2+}$ ions are mainly distributed below the Fermi level ($E_F$), at around 3 eV; while those of the $Fe^{2+}$ ions are distributed closer to $E_F$ (~1 eV below $E_F$). The magnetic hysteresis curves of the $Ni_xFe_{3-x}O_4$ films measured by VSM show that as x increases, the saturation magnetization ($M_s$) linearly decreases. The decreasing trend is primarily attributable to the decrease in net spin magnetic moment, by the $Ni^{2+}$ ($2{\mu}_B$) substitution for octahedral $Fe^{2+}$ ($4{\mu}_B$) site.