• Title/Summary/Keyword: Inverse Problems

Search Result 357, Processing Time 0.027 seconds

Application of the Complex Method to Posture Prediction (Complex Method를 이용한 자세예측)

  • 박우진;최재호;정의승
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.313-319
    • /
    • 1996
  • Human posture prediction and motion simulaiton methods try to solve inverse kinematic problems based on the optimization concept. It is of great concern to develop an optimization method which soloves complicated optimization models in an efficient way in order for the models to be biomechanically sound. In this study, a new optimization method for posture prediction, which is named the Complex Method, is presented. The Complex Method demonstrates more flexibility in a way that it can deal with various forms of objective functions with constraints. This is because the method is a function-value-based approach. A two-eimensional whole-body lifting task was selected as an example of posture prediction, and a comparison study with te incrementation method was conducted in order to evaluate the accuracy of the Complex Method.

  • PDF

A Local Weight Learning Neural Network Architecture for Fast and Accurate Mapping (빠르고 정확한 변환을 위한 국부 가중치 학습 신경회로)

  • 이인숙;오세영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.9
    • /
    • pp.739-746
    • /
    • 1991
  • This paper develops a modified multilayer perceptron architecture which speeds up learning as well as the net's mapping accuracy. In Phase I, a cluster partitioning algorithm like the Kohonen's self-organizing feature map or the leader clustering algorithm is used as the front end that determines the cluster to which the input data belongs. In Phase II, this cluster selects a subset of the hidden layer nodes that combines the input and outputs nodes into a subnet of the full scale backpropagation network. The proposed net has been applied to two mapping problems, one rather smooth and the other highly nonlinear. Namely, the inverse kinematic problem for a 3-link robot manipulator and the 5-bit parity mapping have been chosen as examples. The results demonstrate the proposed net's superior accuracy and convergence properties over the original backpropagation network or its existing improvement techniques.

  • PDF

Analysis and Optimal Control of Linear Time-delay Systems via Fast Walsh Transform (고속윌쉬변환에 의한 선형시지연계의 해석 및 최적제어)

  • Han, Sang-In;Lee, Myeong-Gyu;Kim, Jin-Tae;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.601-606
    • /
    • 1999
  • A Walsh function method is proposed in this report for the analysis and optimal control of linear time-delay systems, which is based on the Picard's iterative approximation and fast Walsh transformation. In this research, the following results are obtained: 1) The differential and integral equation can be solved by transforming into a simple algebraic equation as it was possible with the usual orthogonal function method: 2) General orthogonal function methods require usage of Walsh operational matrices for delay or advance and many calculations of inverse matrices, which are not necessary in this method. Thus, the control problems of linear time-delay systems can be solved much faster and readily.

  • PDF

Properties of GPAM Emulsion for a Wet Strength Agent (습윤 지력증강제로서 GPAM Emulsion의 특성)

  • Kim, Bong-Yong;Son, Dong-Jin;Kim, Hak-Sang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.3
    • /
    • pp.36-40
    • /
    • 2007
  • It has been problematic to repulp the dry broke treated with permanent wet strength agents like PAE, UF and MF. Solution type GPAM has the benefit of easy repulping but it has problems of cocross-linking and tends to gel. Therefore, the product concentration must be lower than 10% to reduce the gel generation problem. We developed emulsion type GPAM by an inverse emulsion technology to resolve both the repulping problem with permanent wet strength agents and the stability problem of GPAM solution products.

Kinematics and Optimization of 2-DOF Parallel Manipulator with Revolute Actuators and a Passive Leg

  • Nam Yun-Joo;Park Myeong-Kwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.828-839
    • /
    • 2006
  • In this paper, a 2-DOF planar parallel manipulator with two revolute actuators and one passive constraining leg. The kinematic analysis of the mechanism is analytically performed : the inverse and forward kinematics problems are solved in closed forms, the workspace is derived systematically, and the three kinds of singular configurations are round. The optimal design to determine the geometric parameters and the operating limits of the actuated legs is performed considering the kinematic manipulability and workspace size. These results of the paper show the effectiveness of the presented manipulator.

A Geometrical Approach to the Characteristic Analysis of Parallel Mechanism for Planar Task (평면 작업용 병렬 메카니즘의 특성 해석을 위한 기하학적 접근)

  • Song, Nak-Yoon;Cho, Hwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.158-166
    • /
    • 1998
  • This paper presents a geometrical approach to the characteristic analysis of parallel mechanism with free joints intended for use as a planar task robot. Solution of the forward and inverse kinematic problems are described. Because the mechanism has only three degree-of-freedom output, constraint equations must be generated to describe the inter-relationship between actuated joints and free joints so as to describe the position and orientation of the moving platform. Once these constraints are incorporated into the kinematics model, a constrained Jacobian matrix is obtained. and it is used for the solution of the forward kinematic equations by Newton-Raphson technique. Another Jacobian matrix was derived to describe the interrelationship between actuated joints and moving platform. The stiffness, velocity transmission ratio, force transmission ratio and dexterity of the mechanism are then determined based on this another Jacobian matrix. The geometrical construction of the mechanism for the best performance was investigated using the characteristic analysis.

  • PDF

Random loading identification of multi-input-multi-output structure

  • Zhi, Hao;Lin, Jiahao
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.359-369
    • /
    • 2000
  • Random loading identification has long been a difficult problem for Multi-Input-Multi-Output (MIMO) structure. In this paper, the Pseudo Excitation Method (PEM), which is an exact and efficient method for computing the structural random response, is extended inversely to identify the excitation power spectral densities (PSD). This identified method, named the Inverse Pseudo Excitation Method (IPEM), resembles the general dynamic loading identification in the frequency domain, and can be used to identify the definite or random excitations of complex structures in a similar way. Numerical simulations are used to reveal the the difficulties in such problems, and the results of some numerical analysis are discussed, which may be very useful in the setting up and processing of experimental data so as to obtain reasonable predictions of the input loading from the selected structural responses.

Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation

  • Dai, H.L.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.441-457
    • /
    • 2005
  • An analytical method is presented to solve the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere subjected to thermal shock and electric excitation. Exact expressions for the transient responses of displacements, stresses, electric displacement and electric potentials in the piezoelectric hollow sphere are obtained by means of Hankel transform, Laplace transform, and inverse transforms. Using Hermite non-linear interpolation method solves Volterra integral equation of the second kind involved in the exact expression, which is caused by interaction between thermo-elastic field and thermo-electric field. Thus, an analytical solution for the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere is obtained. Finally, some numerical results are carried out, and may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.

Effects of Working Fuel Temperature on Injection Characteristics of Bypass Type Piezo Injector (작동 연료온도가 Bypass type 피에조 인젝터의 분사 특성에 미치는 영향)

  • Cho, Insu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.2
    • /
    • pp.66-72
    • /
    • 2019
  • Diesel vehicles suffer from poor starting and running problems at cold temperatures. Diesel vehicles have the characteristic that CO and PM are reduced or similarly discharged when going from low temperature to high temperature. In this study, a bypass type piezo injector for electronic control based common rail injection system was used. Numerical analysis using injector drive analysis model was performed to analyze injector drive and internal fuel flow characteristics according to fuel temperature change. The results show that the rate of density change due to the fuel temperature is proportional, and that the effect of the kinematic viscosity is relatively large between $-20^{\circ}C$ and $0^{\circ}C$. Comparing the results of temperature condition at $0^{\circ}C$ and $20^{\circ}C$, it is considered that the viscosity is more correlated with the needle displacement than the pressure chamber of the delivery chamber.

Use of bivariate gamma function to reconstruct dynamic behavior of laminated composite plates containing embedded delamination under impact loads

  • Lee, Sang-Youl;Jeon, Jong-Su
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study deals with a method based on the modified bivariate gamma function for reconstructions of dynamic behavior of delaminated composite plates subjected to impact loads. The proposed bivariate gamma function is associated with micro-genetic algorithms, which is capable of solving inverse problems to determine the stiffness reduction associated with delamination. From computing the unknown parameters, it is possible for the entire dynamic response data to develop a prediction model of the dynamic response through a regression analysis based on the measurement data. The validity of the proposed method was verified by comparing with results employing a higher-order finite element model. Parametric results revealed that the proposed method can reconstruct dynamic responses and the stiffness reduction of delaminated composite plates can be investigated for different measurements and loading locations.