• 제목/요약/키워드: Inverse Fluidized Bed

검색결과 10건 처리시간 0.03초

역 유동층 생물막 반응기를 이용한 유분함유폐수 처리에 관한 연구 (A study on the treatment of highly-emulsified oily wastewater by an inverse fluidized-bed biofilm reactor)

  • 최윤찬;나영수
    • 한국환경과학회지
    • /
    • 제5권3호
    • /
    • pp.361-367
    • /
    • 1996
  • An inverse fluidized-bed biofilm reactor (IFBBR) was used for the treatment of highly-emulsified oily wastewater. When the concentration of biomass which was cultivated in the synthetic wastewater reached to 6000 mg/1, the oily wastewater was employed to the reactor with a input COD concentration range of 50 mg/1 to 1900 mg/l. Virtually the IFBBR showed a high stability during the long operation period although soma fluctuation was observed. The COD removal efficiency was maintained over 9% under the condition that organic loading rate should be controlled under the value of 1.5 kgCOD/$m^3$/day, and F/M ratio is 1.0 kgCOD/kgVSS/day at $22{\circ}C$ and HRT of 12 hrs. As increasing organic loading rates, the biomass concentration was decreased steadily with decreasing of biofilm dry density rather than biofilm thickness. Based on the experimental jesuits, it was suggested that the decrease in biofilm dry density was caused by a loss of biomass inside the biofilm.

  • PDF

역 유동층 생물막 반응기에서 수리학적 부하가 생물막 성상에 미치는 영향 (Effect of Hydraulic Loading on Biofilm Characteristics in an Inverse Fluidized Bed Biofilm Reactor)

  • 김동석;최윤찬
    • 한국환경과학회지
    • /
    • 제4권3호
    • /
    • pp.221-228
    • /
    • 1995
  • Stability of reactor and effect on biofilm characteristics were investigated by varying the hydraulic residence time in an inverse fluidized bed biofilm reactor(IFBBR). The SCOD removal efficiency was maintained above 90 % in the HRT range of 12hr to 2hr, but the TCOD removal efficiency was dropped down to 50% because of biomass detachment from overgrown bioparticles. The reactor was stably operated up to the conditions of HRT of 2hr and F/M ratio of 4.5kgCOD/$m^3$/day, but above the range there was an abrupt increase of filamentous microorganisms. The optimum biofilm thickness and the biofilm dry density in this experiment were shown as $200\mu\textrm{m}$ and $0.08 g/cm^3$, respectively. The substrate removal rate of this system was found as 1st order because the biofilm was maintained slightly thin by the increased hydraulic loading rate.

  • PDF

역유동층 생물막 반응기에서 수리학적 충격에 따른 아파트 오수의 처리 (Hydraulic Shock of Apartment Sewage in Inverse Fluidized Bed Biofilm Reactor)

  • 박영식;나영수
    • 한국환경과학회지
    • /
    • 제6권1호
    • /
    • pp.17-24
    • /
    • 1997
  • The objective of this study was to examine the transient response to hydraulic shocks in an Inverse fluidized bed bioflm reactor(IFBBR) for the treatment of apartment sewage. The hydraulic shock experiments, when the system were reached at steady state with each HRT 12, 7, and 4hr, were conducted by chancing twice HRT per day during 3days. The SCOD, SS, DO, and pH of the effluent stream were increased with hydraulic shock, but easily recovered to the steady state of pre-hydraulic shock condition. In spite of hydraulic shock, there were not much variation of biomass concentration, biofilm thickness and biofilm dry density.

  • PDF

장방형 역유동층의 동력학적 특성 (Hydrodynamic Characteristics in a Hexagonal Inverse Fluidized Bed)

  • 박영식;안갑환
    • 한국환경과학회지
    • /
    • 제5권1호
    • /
    • pp.93-102
    • /
    • 1996
  • Hydrodynamic characteristics such as gas holdup, liquid circulation velocity and bed expansion in a hexagonal inverse fluidized bed were investigated using air-water system by changing the ratio ($A_d$/$A_r$) of cross-sectional area between the riser and the downcomer, the liquid level($H_1$/H), and the superficial gas velocity($U_g$). The gas holdup and the liquid circulation velocity were steadily increased with the superficial gas velocity increasing, but at high superficial gas velocity, some of gas bubbles were carried over to a downcomer and circulated through the column. When the superficial gas velocity was high, the $A_d$/$A_r$ ratio in the range of 1 to 2.4 did not affect the liquid circulation velocity, but the maximum bed expansion was obtained at $A_d$/$A_r$ ratio of 1.25. The liquid circulation velocity was expressed as a model equation below with variables of the cross-sectional area ratio($A_d$/$A_r$) between riser to downcomer, the liquid level($H_1$/H), the superficial gas velocity($U_g$), the sparser height[(H-$H_s$)/H], and the draft Plate level($H_b$/H). $U_{ld}$ = 11.62U_g^{0.75}$${(\frac{H_1}{H})}^{10.30}$${(\frac{A_d}{A_r})}^{-0.52}$${(\frac({H-H_s}{H})}^{0.91}$${(\frac{H_b}{H})}^{0.13}$

  • PDF

역 유동층 생물막 반응기에서의 생물막 탈착에 관한 연구 (A Study on Biofilm Detachment in an IFBBR)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제3권3호
    • /
    • pp.263-271
    • /
    • 1994
  • A detachment of biofilm was investigated in an inverse fluidized bed biofilm reactor(IFRBR). The biofilm thickness, 5 and the bioparticle density, Pm were decreased by the increase of Reynolds number, Re and the decrease of biomass concentration, h. The correlations were expressed as $\delta$=6l.6+16.33$b_c$-0.004Re and Ppd=0.3+0.027$b_c$- 2.93x$l0^{-5}$ no by multiple linear regression analysis method. Specific substrate removal rate, q was derived by F/M ratio and biofilm thickness as q=0.44.+0.82F/M-5.Ix10$-4^{$\delta$}$. Specific biofilm detachment rate, bds was influenced by FIM ratio and Reynolds number as $b_{ds}$=-0.26+0.26F/M+ 2.17$\times$$10^{-4}$Re. Specific biofilm deachment rate in an IFBBR was higher than that in a FBRR(fluidized bed biofilm reactor) because of the friction between air bubble and the bioparticles.

  • PDF

역 유동층 생물막 반응기에서 액체순환속도가 생물막에 미치는 영향 (Effect of the Liquid Circulation Velocity on the Biofilm Development in an IFBBR)

  • 김동석;윤준영
    • 한국환경과학회지
    • /
    • 제3권1호
    • /
    • pp.49-56
    • /
    • 1994
  • Effect of the liquid circulation velocity on the biofilm development was investigated in an inverse fluidized bed biofilm reactor(IFBBR). To observe the effect of the influent COD concentration on biofilm simultaneously, the influent COD value was adjusted to 1000mg/1 f for 1st reactor, and 2500mg/l for 2nd reactor. The liquid circulation velocity was adjusted by controlling the initial liquid height. As the liquid circulation velocity was decreased, the settling amount of biomass was increased and the amount of effluent biomass was decreased. Since the friction of liquid was decreased by the decrease of liquid circulation velocity, the biofilm thickness was increased and the biofilm dry density was decreased. In the 1st reactor the SCOD removal efficiency was constant regardless of the variation of the liquid circulation velocity, but it was increased by the decrease of the liquid circulation velocity because of more biomass population in 2nd reactor.

  • PDF

삼상 역 유동층의 수력학, 열전달 및 물질전달 특성 (Characteristics of Hydrodynamics, Heat and Mass Transfer in Three-Phase Inverse Fluidized Beds)

  • 강용;이경일;신익상;손성모;김상돈;정헌
    • Korean Chemical Engineering Research
    • /
    • 제46권3호
    • /
    • pp.451-464
    • /
    • 2008
  • 삼상 역 유동층은 유동하거나 부유하는 입자의 크기가 매우 작은 경우나 유동입자의 밀도가 액체보다 작은 담체나 접촉매체 또는 촉매전달물질인 경우에 생물반응기, 발효공정, 폐수처리공정, 흡착, 흡수공정 등에 매우 효과적으로 사용될 수 있어서 그 적용성은 날로 증대되고 있다. 그러나, 삼상 역 유동층에 대해서는 많은 연구가 진행되지 않아 왔으며 수력학적 특성에 대한 연구조차도 미흡한 실정이다. 삼상 역 유동층을 이용한 많은 종류의 반응기와 공정들의 운전과 설계 그리고 scale-up을 위해서는 삼상 역 유동층에서 수력학적 특성과 열전달과 물질전달과 같은 이동현상에 대한 정보는 필수적이라는 것은 자명한 사실이다. 따라서, 본 총설에서는 삼상 역 유동층에 대한 정보들을 공학적 측면에서 요약하고 재정리하여서 이 분야의 현장에서 필요한 지식들을 제안하고자 하였다. 본 논문은 수력학적 특성, 열전달 특성 그리고 물질전달 특성의 세 부분으로 이루어져있다. 즉, 수력학적 특성 부분에서는 운전변수가 상 체류량, 기포의 특성 그리고 유동입자의 분산에 미치는 영향을 검토하였으며, 열전달 특성 부분에서는 삼상 역 유동층에서의 운전변수가 열전달 계수에 미치는 영향을 고찰하였고, 열전달 모델에 대한 정리를 하였으며, 물질전달 특성 부분에서는 운전변수가 연속액상의 축방향 분산계수 및 액상 부피물질전달계수에 미치는 영향에 대해 고찰하였다. 또한, 각 절에서 유동입자의 최소유동화속도, 상 체류량, 기포특성, 유동입자의 요동빈도수 및 유동입자의 분산 등과 같은 수력학적 특성과 열전달 계수 그리고 연속액상의 축방향 확산계수와 물질전달계수 등을 예측할 수 있는 상관식들을 제안하였다. 본 총설의 마지막 절에서는 삼상 역 유동층의 공업적 응용을 위해 앞으로 더 연구해야하는 내용에 대해 제안을 하였다.

기체 유동층에서 입자 비산속도 상관식에 의한 수송속도의 예측 (Predicting the Transport Velocity by the Correlation on Particle Entrainment Rate in the Gas Fluidized-bed)

  • 원유섭;무하매드 샤자드 쿠람;정아름;최정후;류호정
    • Korean Chemical Engineering Research
    • /
    • 제55권5호
    • /
    • pp.638-645
    • /
    • 2017
  • 기체 유동층에서 입자비산속도에 관한 상관식을 사용하여 입자의 수송속도를 예측하는 모델을 제안하였다. Choi 등과 Li와 Kato의 상관식을 사용하여 emptying time 방법을 모사하였다. 기체속도의 단위에 의한 영향을 배제하기 위해서, 기체속도를 종말속도로 나눈 무차원 속도를 x-축의 값으로 사용하였다. y-축은 입자비산속도의 역수를 사용하였다. 기체속도를 증가시킬 때, y-값의 감소 기울기가 절대값으로 0.398 [$m^2s/kg$]를 나타내는 무차원 속도를 수송속도로 간주하였다. 모델의 예측값은 고온, 고압에서도 측정값과 비교적 잘 일치하였다.

고체연료 매체순환연소기를 위한 회재분리기에서 분리속도 및 분리효율에 미치는 조업변수들의 영향 (Effects of Operating Variables on Separation Rate and Separation Efficiency in Ash Separator for Solid Fuel Chemical Looping Combustor)

  • 류호정;이동호;윤주영;장명수;배달희;박재현;백점인
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.211-219
    • /
    • 2016
  • To develop an ash separator for the solid fuel chemical looping combustion system, effects of operating variables such as solid injection nozzle velocity, diameter of solid injection nozzle, gap between solid injection line and vent line, vent line inside diameter, and solid intake height on solid separation rate and solid separation efficiency were measured and discussed using heavy and coarse particle and light and fine particles mixture as bed material in an acrylic fluidized bed apparatus. The solid separation rate increased as the solid injection nozzle velocity and the diameter of solid injection nozzle increased. However, the solid separation rate decreased as the gap between solid injection line and vent line, the vent line inside diameter, and the solid intake height increased. The solid separation efficiency was in inverse proportion to the solid separation rate. In this study, we could get high solid separation rate up to 2.39 kg/hr with 91.6% of solid separation efficiency.