• Title/Summary/Keyword: Inverse Bremsstrahlung

Search Result 6, Processing Time 0.021 seconds

On the Nature of the Gamma-ray Bursts

  • Hong, Kyung-Ai;Kim, Sug-Whan;Kim, Tu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.107-127
    • /
    • 1987
  • Review of the $\gamma$-ray burst phenomena are presented. History of the $\gamma$-ray bursts, characteristics, and three radiation mechanisms of thermal bremsstrahlung, thermal synchrotron, and inverse Compton scattering processes are considered.

  • PDF

Shock Compresssion and Microparticles Acceleration using High Power Laser (고 출력 레이저 의한 충격파 현상 연구 및 응용)

  • Lee, Hyun-Hee;Yoh, Jai-Ick
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1916-1919
    • /
    • 2007
  • We have been setting up experiments on propagation of shock waves generated by the pulsed laser ablation. One side of a thin metal foil is subjected to laser ablation as a shock wave propagates through the foil. The shock wave, which penetrates through the foil is reflected by an acoustic impedance which causes the metal foil to high-strain rate deform. This short time physics is captured on an ICCD camera. The focus of our research is applying shock wave and deformation of the thin foil from the ablation to accelerating micro-particles to a very high speed.

  • PDF

Cosmological shocks and the cosmic gamma-ray background

  • Ma, Renyi;Ryu, Dong-Su;Kang, Hye-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.83.2-83.2
    • /
    • 2010
  • During the formation of cosmic web, collisionless shock waves are produced around and inside the substructures. In these shock waves electrons and ions are accelerated to such high energies that they can produce gamma rays in several ways. Many authors have studied the contribution of shock-induced radiation to the cosmic gamma-ray background. However not all the important physical processes are included in their calculation. By considering more complete physical process, we re-investigate the problem. In our model, the energy distribution of the cosmic rays (CRs) are calculated by widely accepted diffusive shock acceleration model, both primary and secondary CR electrons are included, both inverse Compton scattering and bremsstrahlung process are considered. The difference of the results are discussed.

  • PDF

High Power Laser Driven Shock Compression of Metals and Its Innovative Applications (고 출력 레이저에 의한 충격파 현상 연구 및 응용)

  • Lee, Hyun-Hee;Gwak, Min-Cheol;Choi, Ji-Hee;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.832-840
    • /
    • 2008
  • Ablation occurs at irradiance beyond $10^9\;W/cm^2$ with nanosecond and short laser pulses focused onto any materials. Phenomenologically, the surface temperature is instantaneously heated past its vaporization temperature. Before the surface layer is able to vaporize, underlying material will reach its vaporization temperature. Temperature and pressure of the underlying material are raised beyond their critical values, causing the surface to explode. The pressure over the irradiated surface from the recoil of vaporized material can be as high as $10^5\;MPa$. The interaction of high power nanosecond laser with a thin metal in air has been investigated. The nanosecond pulse laser beam in atmosphere generates intensive explosions of the materials. The explosive ejection of materials make the surrounding gas compressed, which form a shock wave that travels at several thousand meters per second. To understand the laser ablation mechanism including the heating and ionization of the metal after lasing, the temporal evolution of shock waves is captured on an ICCD camera through laser flash shadowgraphy. The expansion of shock wave in atmosphere was found to agree with the Sedov's self-similar spherical blast wave solution.

Shock Compression of Metal using High Energy Laser and Innovative Applications (고 에너지를 이용한 충격파 발생과 응용)

  • Lee, Hyun-Hee;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.353-357
    • /
    • 2007
  • We have been setting up experiments on propagation of shock waves generated by the pulsed laser ablation. One side of a thin metal foil is subjected to laser ablation as a shock wave propagates through the foil. The shock wave, which penetrates through the foil is reflected by an acoustic impedance which causes the metal foil to high-strain rate deform. This short time physics is captured on an ICCD camera. The focus of our research is applying shock wave and deformation of the thin foil from the ablation to accelerating micro-particles to a very high speed.

  • PDF

Langmuir probe measurements of electron density and electron temperature in early stage of laser-produced carbon plasma

  • Hong, C.;Chae, H.B.;Lee, S.B.;Han, Y.J.;Jung, J.H.;Cho, B.K.;Park, H.;Kim, C.K.;Kim, S.O.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 2000
  • Langmuir probe measurements of electron density, electron temperature and potential are mad in the early stage (<5${\mu}$s) of a laser ablated plasma plume, in which a positive current form positive ions and a electron current are overlapped. The plasma wes produced by focusing the second harmonic, 532 nm, of Q-switched Nd:YAG laser on a high purity carbon target. Then the laser intensity on the target of ~1.6${\times}$10$\^$15/ W/$\textrm{cm}^2$. The measured electron desities and temperatures are ~2${\times}$10/sip 11/ cm$\^$-3/ and -3 eV. In particluar , the phenomenon that the electron temperature decreased and then increased was observed,. It could be well explained that this phenomenon occurred in the process of inverse Bremsstrahlung of free electrons in plasma. Additionally, the plasma potential(>11V) was higher than the published values.

  • PDF