• 제목/요약/키워드: Inverse Analysis Method

검색결과 782건 처리시간 0.027초

검정일 1회 검정에 의한 착유우의 1일 유량 추정시 오차와 정확도 (Bias and Accuracy of Single Milking Testing Schemes to Estimate Daily Milk)

  • 조용민;안병석;최유림
    • Journal of Animal Science and Technology
    • /
    • 제45권5호
    • /
    • pp.725-730
    • /
    • 2003
  • This study was conducted to evaluate the adequacy of an alternative a.m.-p.m. testing scheme for milk yield in comparison with the official test method based on weighing two milkings within 24 h. A total of 8,309 p.m. milking weights and 6,767 a.m. milking weights from 72 Holstein cows raised at N.L.R.I. were collected between October 2000 and November 2001. Ratios were computes for daily milk yield to a.m. and p.m. milking weights(direct yield ratios) and ratios of a.m. and p.m. milking weights to daily milk yield (inverse yield ratios). Analysis of variance indicated that the milking interval is the most important source of variation for yield ratios. Adjustment factors for estimating daily milk yield from single milking weights were derived through regression analysis of direct and inverse yield ratios on the length of the milking interval. Daily milk yield was estimated more precisely and accurately when adjustment factors were used than when single milking weights were doubled. In conclusion, alternative recording of a.m. and p.m. milking weights led to reliable estimates of milk yields.

MCMC Approach for Parameter Estimation in the Structural Analysis and Prognosis

  • An, Da-Wn;Gang, Jin-Hyuk;Choi, Joo-Ho
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.641-649
    • /
    • 2010
  • Estimation of uncertain parameters is required in many engineering problems which involve probabilistic structural analysis as well as prognosis of existing structures. In this case, Bayesian framework is often employed, which is to represent the uncertainty of parameters in terms of probability distributions conditional on the provided data. The resulting form of distribution, however, is not amenable to the practical application due to its complex nature making the standard probability functions useless. In this study, Markov chain Monte Carlo (MCMC) method is proposed to overcome this difficulty, which is a modern computational technique for the efficient and straightforward estimation of parameters. Three case studies that implement the estimation are presented to illustrate the concept. The first one is an inverse estimation, in which the unknown input parameters are inversely estimated based on a finite number of measured response data. The next one is a metamodel uncertainty problem that arises when the original response function is approximated by a metamodel using a finite set of response values. The last one is a prognostics problem, in which the unknown parameters of the degradation model are estimated based on the monitored data.

Dimmable Spatial Intensity Modulation for Visible-light Communication: Capacity Analysis and Practical Design

  • Kim, Byung Wook;Jung, Sung-Yoon
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.532-539
    • /
    • 2018
  • Multiple LED arrays can be utilized in visible-light communication (VLC) to improve communication efficiency, while maintaining smart illumination functionality through dimming control. This paper proposes a modulation scheme called "Spatial Intensity Modulation" (SIM), where the effective number of turned-on LEDs is employed for data modulation and dimming control in VLC systems. Unlike the conventional pulse-amplitude modulation (PAM), symbol intensity levels are not determined by the amplitude levels of a VLC signal from each LED, but by counting the number of turned-on LEDs, illuminating with a single amplitude level. Because the intensity of a SIM symbol and the target dimming level are determined solely in the spatial domain, the problems of conventional PAM-based VLC and related MIMO VLC schemes, such as unstable dimming control, non uniform illumination functionality, and burdens of channel prediction, can be solved. By varying the number and formation of turned-on LEDs around the target dimming level in time, the proposed SIM scheme guarantees homogeneous illumination over a target area. An analysis of the dimming capacity, which is the achievable communication rate under the target dimming level in VLC, is provided by deriving the turn-on probability to maximize the entropy of the SIM-based VLC system. In addition, a practical design of dimmable SIM scheme applying the multilevel inverse source coding (MISC) method is proposed. The simulation results under a range of parameters provide baseline data to verify the performance of the proposed dimmable SIM scheme and applications in real systems.

르장드르 웨이블릿을 이용한 쌍일차 시스템 수치 해석 (Numerical Method for the Analysis of Bilinear Systems via Legendre Wavelets)

  • 김범수
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.827-833
    • /
    • 2013
  • In this paper, an efficient computational method is presented for state space analysis of bilinear systems via Legendre wavelets. The differential matrix equation is converted to a generalized Sylvester matrix equation by using Legendre wavelets as a basis. First, an explicit expression for the inverse of the integral operational matrix of the Legendre wavelets is presented. Then using it, we propose a preorder traversal algorithm to solve the generalized Sylvester matrix equation, which greatly reduces the computation time. Finally the efficiency of the proposed method is discussed using numerical examples.

난류열전달 증진을 위한 리브형상의 수치최적화 (Numerical Optimization of Rib Shape to Enhance Turbulent Heat Transfer)

  • 김선수;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.304-308
    • /
    • 2000
  • This paper presents a numerical optimization method to design geometric shape of streamwise periodic ribs mounted on one of the principal walls to enhance turbulent heat transfer in a rectangular channel flow. The golden section method is used for the one dimensional search. The optimization is based on Wavier-Stokes analysis of turbulent forced convection with $k-{\varepsilon}$ turbulence model. The width-to-height ratio of a rib is chosen as a design variable. The object function is defined as an inverse of average Nusselt number. An optimum shape of the rib has been obtained with reasonable computing time.

  • PDF

Simultaneous identification of stiffness and damping based on derivatives of eigen-parameters

  • Lia, H.;Liu, J.K.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.687-702
    • /
    • 2015
  • A method based on derivatives of eigen-parameters is presented for damage detection in discrete systems with dampers. The damage is simulated by decrease on the stiffness coefficient and increase of the damping coefficient. In the forward analysis, the derivatives of eigen-parameters are derived for the discrete system. In the inverse analysis, a derivative of eigen-parameters based model updating approach is used to identify damages in frequency domain. Two numerical examples are investigated to illustrate efficiency and accuracy of the proposed method. Studies in this paper indicate that the proposed method is efficient and robust for both single and multiple damages and is insensitive to measurement noise. And satisfactory identified results can be obtained from few numbers of iterations.

고속윌쉬변환에 의한 선형시지연계의 해석 및 최적제어 (Analysis and Optimal Control of Linear Time-delay Systems via Fast Walsh Transform)

  • 한상인;이명규;김진태;안두수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권5호
    • /
    • pp.601-606
    • /
    • 1999
  • A Walsh function method is proposed in this report for the analysis and optimal control of linear time-delay systems, which is based on the Picard's iterative approximation and fast Walsh transformation. In this research, the following results are obtained: 1) The differential and integral equation can be solved by transforming into a simple algebraic equation as it was possible with the usual orthogonal function method: 2) General orthogonal function methods require usage of Walsh operational matrices for delay or advance and many calculations of inverse matrices, which are not necessary in this method. Thus, the control problems of linear time-delay systems can be solved much faster and readily.

  • PDF

수면파형의 독립성분분석 (Independent Component Analysis(ICA) of Sleep Waves)

  • 이일근
    • 수면정신생리
    • /
    • 제8권1호
    • /
    • pp.67-71
    • /
    • 2001
  • Independent Component Analysis (ICA) is a blind source separation method using unsupervised learning and mutual information theory created in the late eighties and developed in the nineties. It has already succeeded in separating eye movement artifacts from human scalp EEG recording. Several characteristic sleep waves such as sleep spindle, K-complex, and positive occipital sharp transient of sleep (POSTS) can be recorded during sleep EEG recording. They are used as stage determining factors of sleep staging and might be reflections of unknown neural sources during sleep. We applied the ICA method to sleep EEG for sleep waves separation. Eighteen channel scalp longitudinal bipolar montage was used for the EEG recording. With the sampling rate of 256Hz, digital EEG data were converted into 18 by n matrix which was used as a original data matrix X. Independent source matrix U (18 by n) was obtained by independent component analysis method ($U=W{\timex}X$, where W is an 18 by 18 matrix obtained by ICA procedures). ICA was applied to the original EEG containing sleep spindle, K-complex, and POSTS. Among the 18 independent components, those containing characteristic shape of sleep waves could be identified. Each independent component was reconstructed into original montage by the product of inverse matrix of W (inv(W)) and U. The reconstructed EEG might be a separation of sleep waves without other components of original EEG matrix X. This result (might) demonstrates that characteristic sleep waves may be separated from original EEG of unknown mixed neural origins by the Independent Component Analysis (ICA) method.

  • PDF

수중강판의 결함 및 열화 검출을 위한 탄성파 유한요소 시뮬레이션 (Finite Element Simulation of Elastic Waves for Detecting Defects and Deteriorations in Underwater Steel Plates)

  • 우진호;나원배
    • 한국해양공학회지
    • /
    • 제27권3호
    • /
    • pp.61-66
    • /
    • 2013
  • This paper presents the results of finite element simulations of elastic wave propagation in an underwater steel plate and the verification of a proposed method utilizing elastic wave-based damage detection. For the simulation and verification, we carried out the following procedures. First, three-dimensional finite element models were constructed using a general purpose finite element program. Second, two types of damages (mechanical defects and deteriorations) were applied to the underwater steel plate and three parameters (defect location, defect width, and depth) were considered to adjust the severity of the applied damages. Third, elastic waves were generated using the oblique incident method with a Gaussian tone burst, and the response signals were obtained at the receiving point for each defect or deterioration case. In addition, the received time domain signals were analyzed, particularly by measuring the magnitudes of the maximum amplitudes. Finally, the presence and severity of each type of damage were identified by the decreasing ratios of the maximum amplitudes. The results showed that the received signals for the models had the same global pattern with minor changes in the amplitudes and phases, and the decreasing ratio generally increased as the damage area increased. In addition, we found that the defect depth was more critical than the width in the decrease of the amplitude. This mainly occurred because the layout of the depth interfered with the elastic wave propagation in a more severe manner than the layout of the width. An inverse analysis showed that the proposed method is applicable for detecting mechanical defects and quantifying their severity.

남한지역 PM10 관측자료의 공간 보간법에 대한 비교 분석 (Comparative analysis of spatial interpolation methods of PM10 observation data in South Korea)

  • 강정혁;이서연;이승재;이재한
    • 한국농림기상학회지
    • /
    • 제24권2호
    • /
    • pp.124-132
    • /
    • 2022
  • 불균일한 미세먼지 관측값으로부터 남한 전체에 대한 공간적 분포를 추정하기 위해서는 적절한 보간 처리가 필수이다. 본 연구에서는 2019년도에 미세먼지 농도가 높았던 1월달과 농도가 낮았던 7월달의 전국의 기상청 및 AirKorea 측정소 자료를 이용하여 IDW, OK, SI, RBF 총 4가지 보간법을 테스트하였다. 각 보간 방법별 세부 인자를 고려한 총 6가지 경우에 대해 보간 처리 및 교차 검증을 진행하였다. 자료 처리속도는 SI, RBF, IDW, OK 순으로 빠르게 나타났다. 교차 검증의 결과, IDW가 상대적으로 제일 낮은 NRMSE 결과를 보였고 OK방법이 가장 큰 NRMSE를 보였다. 이러한 연구의 결과는 사용자가 남한 지역에서 불균일한 미세먼지 관측 자료를 사용하여 전체 수평 공간을 보간할 때 적합한 방법을 단기간에 선택하고 신뢰성과 효과성 있는 분석을 실시하는데 도움이 될 것으로 기대된다.