• Title/Summary/Keyword: Inverse Analysis Method

Search Result 784, Processing Time 0.027 seconds

Numerical Analysis on the Signal Characteristics for Scattered Far-field of Ultrasonic SH-Wave by the Internal Cavity (재료내 기공결함에 의한 SH형 초음파 원거리 산란장의 신호특성에 대한 수치해석)

  • Lee, Jun-Hyeon;Lee, Seo-Il;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.163-172
    • /
    • 2000
  • In this study, the scattered far-field due to a cavity embedded in infinite media subjected to the incident SH-wave was calculated by the boundary element method. The effects of cavity shape and distance between internal cavity and internal point in infinite media were considered. The scattered far-field of the frequency domain was transformed into the signal of the time domain by using the Inverse Fast Fourier Transform(IFFT). It was found that the amplitude of scattered signal in time domain decreased with the increase of the distance between the detecting points of ultrasonic scattered field and the center of internal cavity in media. In addition, the time delay was clearly found in time domain waveform as the distance between the detecting points of ultrasonic scattered field and the center of internal cavity was gradually increased.

Study of Forming Analysis Auto-body Panel Using One-step Theory (One-Step 이론을 이용한 차체판넬 성형 해석에 관한 연구)

  • Ahn H.G.;KO H.H.;Lee C.H.;Ahn B.I.;Moon W.S.;Jung D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.585-588
    • /
    • 2005
  • Many process parameters have an effect on the auto-body panel forming process. A well designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented, in this paper The one-step approach using a finite element inverse method will be introduced to predict the optimal forming with changing of blank pressure the developed program is applied to auto-body panel forming.

  • PDF

Analysis of Transient Scattering from Conducting Objects using Weighted Laguerre Polynomials and Electric Field Integral Equation (가중 라게르 다항식과 전장적분식을 이용한 도체의 과도 산란 해석)

  • 정백호;정용식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.937-946
    • /
    • 2002
  • In this paper, we present a stable solution of the transient electromagnetic scattering from the conducting objects. This method does not utilize the conventional marching-on in time (MOT) solution. Instead we solve the time domain integral equation by expressing the transient behavior of the induced current in terms of weighted Laguerre polynomials. By using this basis functions for the temporal variation, the time derivative in the integral equation can be handled analytically. Since these temporal basis functions converge to zero as time progresses, the transient response of the induced current does not have a late time oscillation. To show the validity of the proposed method, we solve a time domain electric feld integral equation and compare the results of MOT, Mie solution, and the inverse discrete Fourier transform (IDFT) of the solution obtained in the frequency domain.

A Study of Inverse Modeling from Micro Gas Turbine Experimental Test Data (소형 가스터빈 엔진 실험 데이터를 이용한 역모델링 연구)

  • Kong, Chang-Duk;Lim, Se-Myeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.1-7
    • /
    • 2009
  • The gas turbine engine performance is greatly relied on its component performance characteristics. Generally, acquisition of component maps is not easy for engine purchasers because it is an expensive intellectual property of gas turbine engine supplier. In the previous work, the maps were inversely generated from engine performance deck data, but this method is limited to obtain the realistic maps due to calculated performance deck data. Therefore this work proposes newly to generate more realistic compressor map from experimental performance test data. And then a realistic compressor map can be generated form those processed data using the proposed extended scaling method at each rotational speed. Evaluation can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and on-condition monitoring performance data.

Dimension reduction for right-censored survival regression: transformation approach

  • Yoo, Jae Keun;Kim, Sung-Jin;Seo, Bi-Seul;Shin, Hyejung;Sim, Su-Ah
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.259-268
    • /
    • 2016
  • High-dimensional survival data with large numbers of predictors has become more common. The analysis of such data can be facilitated if the dimensions of predictors are adequately reduced. Recent studies show that a method called sliced inverse regression (SIR) is an effective dimension reduction tool in high-dimensional survival regression. However, it faces incapability in implementation due to a double categorization procedure. This problem can be overcome in the right-censoring type by transforming the observed survival time and censoring status into a single variable. This provides more flexibility in the categorization, so the applicability of SIR can be enhanced. Numerical studies show that the proposed transforming approach is equally good to (or even better) than the usual SIR application in both balanced and highly-unbalanced censoring status. The real data example also confirms its practical usefulness, so the proposed approach should be an effective and valuable addition to usual statistical practitioners.

An Evaluation Method for the Musculoskeletal Hazards in Wood Manufacturing Workers Using MediaPipe (MediaPipe를 이용한 목재 제조업 작업자의 근골격계 유해요인 평가 방법)

  • Jung, Sungoh;Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2022
  • This paper proposes a method for evaluating the work of manufacturing workers using MediaPipe as a risk factor for musculoskeletal diseases. Recently, musculoskeletal disorders (MSDs) caused by repeated working attitudes in industrial sites have emerged as one of the biggest problems in the industrial health field while increasing public interest. The Korea Occupational Safety and Health Agency presents tools such as NIOSH Lifting Equations (NIOSH), OWAS (Ovako Working-posture Analysis System), Rapid Upper Limb Assessment (RULA), and Rapid Entertainment Assessment (REBA) as ways to quantitatively calculate the risk of musculoskeletal diseases that can occur due to workers' repeated working attitudes. To compensate for these shortcomings, the system proposed in this study obtains the position of the joint by estimating the posture of the worker using the posture estimation learning model of MediaPipe. The position of the joint is calculated using inverse kinetics to obtain an angle and substitute it into the REBA equation to calculate the load level of the working posture. The calculated result was compared to the expert's image-based REBA evaluation result, and if there was a result with a large error, feedback was conducted with the expert again.

The Vehicle Accident Reconstruction using Skid and Yaw Marks (스키드마크 및 요마크를 이용한 차량사고재구성)

  • 이승종;하정섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.55-63
    • /
    • 2003
  • The traffic accident is the prerequisite of the traffic accident reconstruction. In this study, the traffic accident (forward collision) and traffic accident reconstruction (inverse collision) simulations are conducted to improve the quality and accuracy of the traffic accident reconstruction. The vehicle and tire models are used to simulate the trajectories for the post-impact motion of the vehicles after collision. The impact dynamic model applicable to the forward and inverse collision simulations is also provided. The accuracy of impact analysis for the vehicular collision depends on the accuracy of the coefficients of restitution and friction. The neural network is used to estimate these coefficients. The forward and inverse collision simulations for the multi-collisions are conducted. The new method fur the accident reconstruction is proposed to calculate the pre-impact velocities of the vehicles without using the trial and error process which requires the repeated calculations of the initial velocities until the forward collision simulation satisfies with the accident evidences. This method estimates the pre-impact velocities of the vehicles by analyzing the trajectories of the vehicles. The vehicle slides on a road surface not only under the skidding during an emergency braking but also under the steering. A vehicle over steering or cornering with excessive speed loses the traction and leaves tile yaw marks on the road surface. The new critical speed formula based on the vehicle dynamics is proposed to analyze the yaw marks and shows smaller errors than ones of the existing critical speed formula.

Effect of Pressure on Interfacial Heat Transfer Coefficient in the Squeeze Casting Process (용탕단조시 가압력에 따른 계면열전달계수의 변화)

  • Kim, Jin-Soo;Ahn, Jae-Young;Han, Yo-Sub;Lee, Ho-In;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.248-257
    • /
    • 1994
  • Research in heat transfer and solidification commonly involves experimentation and mathematical modeling with associated numerical analysis and computation. Inverse problems in heat transfer are part of this paradigm. During the solidification of metal casting, an interfacial heat transfer resistance exists at the boundary between the casting and the mold, and this heat transfer resistance usually varies with time. In the case of the squeeze casting the contact heat transfer resistance is decreased by pressure and ideal contact is almost accomplished. In the present work, heat transfer coefficient, which is inverse value of the heat transfer resistance, was used for convenience. A numerical technique, Non-Linear Estimation has been adopted for calculation of the casting/mold interfacial heat transfer coefficient during the squeeze casting process. In this method, the measured temperature data from experiment were used. The computational results were applied to the analysis of heat transfer and solidification.

  • PDF

A Study on the Hydraulic Excitation Forces Using Transfer Function and Operational Measured Data for the Centrifugal Pump (전달함수와 진동응답 측정에 의한 원심펌프에서의 유체력 특성에 관한 연구)

  • Choi, Bok-Lok;Park, Jin-Moo;Kim, Kwang-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1931-1939
    • /
    • 2000
  • Operating excitation forces of the linear vibratory system are normally determined by direct measurement techniques using load cells, strain gauges, etc. But, hydraulic forces of the rotating turbomachinery such as centrifugal pumps are exerted on an impeller due to asymmety of the flow by the interaction between pump impeller and volute. So, investigations of wide range of hydraulic designs and geometric deviations are difficult by direct method. This paper presents a hybrid approach for fourier transformed operational excitation forces, which uses pseudo-inverse matrix of the transfer matrix for the system and the measured vibrational data with standard installed pump. The determination of the transfer function matrix is based on a linear rotor/stationary system and steady state harmonic response in finite element analysis. And, vibrational data is collected in both vertical and horizontal directions at inboard and outboard bearing housings. The results of the process may be enhanced by making acceleration measurements at many more locations than there are forces to be determined.

Inverse Dynamic Analysis for Various Drivings in Kinematic Systems (기구학적 시스템에 있어서 구동방법에 따른 역동역학 해석)

  • Lee, Byung Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.869-876
    • /
    • 2017
  • Analysis of actuating forces and joint reaction forces are essential to determine the capacity of actuators, to control the mechanical system and to design its components. This paper presents an algorithm that calculates actuating forces(or torques), depending on the various types of driving constraints, in order to produce a given system motion in the joint coordinate space. The joint coordinates are used as the generalized coordinates of a kinematic system. System equations of motion and constraint acceleration equations are transformed from the Cartesian coordinate space to the joint coordinate space using the velocity transformation method. A numerical example is carried out to verify the algorithm proposed.