• 제목/요약/키워드: Inveon PET

검색결과 5건 처리시간 0.019초

소동물 영상을 위한 Siemens Inveon PET 스캐너의 성능평가 (Performance Measurement of Siemens Inveon PET Scanner for Small Animal Imaging)

  • 유아람;김진수;김경민;이영섭;김종국;우상근;박지애;김희중;천기정
    • 한국의학물리학회지:의학물리
    • /
    • 제21권2호
    • /
    • pp.145-152
    • /
    • 2010
  • Inveon PET은 최근에 출시된 소동물 전용 PET 시스템이다. 이 연구에서는 Inveon PET 스캐너의 성능을 평가하기 위하여 공간 분해능, 민감도, 산란분획, 잡음등가계수(Noise equivalent count rate: NECR)를 측정하였다. 공간 분해능 측정은 에너지창 350~625 keV, 민감도, 산란분획, NECR 측정은 350~750 keV에서 수행하였고 동시계수창은 3.432 ns였다. 크기 $1\;mm^3$의 F-18 점 선원을 만들어 중심에서부터 5 cm 벗어난 위치까지 공간 분해능을 측정하였다. 민감도를 측정하기 위하여 스캐너의 축방향 길이와 동일한 길이 12.7 cm의 F-18 선 선원을 만들고 두께 2 mm의 알루미늄 관을 1개에서 5개까지 차례로 씌우며 절대 민감도를 계산하였다. 산란분획과 NECR 측정하기 위하여 두 가지 NEMA 산란 팬텀(랫(rat): 지름 50 mm, 길이 150 mm/마우스(mouse): 지름 25 mm, 길이 70 mm)을 이용하였고, F-18 선 선원(랫: 353 MBq, 마우스: 201 MBq)를 만들어 14반감기(25.6시간) 동안 데이터를 획득하였다. F-18의 중심에서 공간 분해능은 반경, 접선, 축 방향에서 각각 1.53, 1.50, 2.33 mm이고, 체적 공간 분해능은 $5.43\;mm^3$이었다. 절대민감도는 6.61%이었다. F-18 최대 NECR은 486 kcps @121 MBq (랫 팬텀), 1056 kcps @128 MBq (마우스 팬텀)이었다. 랫과 마우스의 산란분획은 각각 20.59%, 7.93%이었다. 이 연구에서 최신 소동물용 PET인 Inveon PET의 표준성능을 평가하였고 소동물 PET영상 획득에 유용함 을 보여주었다.

Effect of filters and reconstruction method on Cu-64 PET image

  • Lee, Seonhwa;Kim, Jung min;Kim, Jung Young;Kim, Jin Su
    • 대한방사성의약품학회지
    • /
    • 제3권2호
    • /
    • pp.65-71
    • /
    • 2017
  • To assess the effects of filter and reconstruction of Cu-64 PET data on Siemens scanner, the various reconstruction algorithm with various filters were assessed in terms of spatial resolution, non-uniformity (NU), recovery coefficient (RC), and spillover ratio (SOR). Image reconstruction was performed using filtered backprojection (FBP), 2D ordered subset expectation maximization (OSEM), 3D reprojection algorithm (3DRP), and maximum a posteriori algorithms (MAP). For the FBP reconstruction, ramp, butterworth, hamming, hanning, or parzen filters were used. Attenuation or scatter correction were performed to assess the effect of attenuation and scatter correction. Regarding spatial resolution, highest achievable volumetric resolution was $3.08mm^3$ at the center of FOV when MAP (${\beta}=0.1$) reconstruction method was used. SOR was below 4% for FBP when ramp, Hamming, Hanning, or Shepp-logan filter were used. The lowest NU (highest uniform) after attenuation & scatter correction was 5.39% when FBP (parzen filter) was used. Regarding RC, 0.9 < RC < 1.1 was obtained when OSEM (iteration: 10) was used when attenuation and scatter correction were applied. In this study, image quality of Cu-64 on Siemens Inveon PET was investigated. This data will helpful for the quantification of Cu-64 PET data.

PET 영상의 정량적 개선을 위한 리스트-이벤트 데이터 재추출 (List-event Data Resampling for Quantitative Improvement of PET Image)

  • 우상근;유정우;김지민;강주현;임상무;김경민
    • 한국의학물리학회지:의학물리
    • /
    • 제23권4호
    • /
    • pp.309-316
    • /
    • 2012
  • 다중영상화기술은 진단 및 치료 반응평가의 성능향상을 위하여 활발히 연구되고 있으며 하드웨어의 통합에도 불구하고 기기간의 획득방법의 차이에 따라 영상간의 불일치와 계수부족으로 인하여 정합도를 떨어뜨린다. 이에 본 연구에서는 소동물 PET 리스트모드 데이터의 저장형식을 분석하고 잡음 및 통계적 특성을 향상시키기 위하여 이벤트 데이터를 재추출하여 정량적으로 개선된 PET 영상을 획득하고자 하였다. 소동물 리스트모드 Inveon PET 데이터는 소동물에 37 MBq/0.1 ml를 꼬리정맥에 주사하고 60분 후 10분 동안 정적데이터를 획득하였다. 생체신호와 같이 획득된 리스트모드 데이터형식은 48 비트의 패킷크기로 이루어져 있으며 패킷 내에서는 8 비트의 헤더와 40 비트의 payload 영역으로 나누어져 있다. 사이노그램 생성은 그레이코드로 각 패킷의 순서와 흐름을 평가하고 각 패킷의 순서를 CPU에서 검출기위치 변환과 단순 증가 그리고 비모수 부트스트랩 기법을 이용하여 재추출하여 새로운 사이노그램을 생성하였다. 영상은 3 span과 31 ring difference로 설정하여 생성된 사이노그램은 산란 및 감쇠보정을 고려하지 않고 16부분 집합으로 4회 반복하는 OSEM 2D 알고리즘을 이용하여 재구성하였다. 획득된 PET 데이터의 헤더정보에서의 동시계수의 총수는 1,394만 계수였으며, 리스트-이벤트 데이터의 패킷을 분석한 동시계수의 총수는 1,293만 계수였다. PET 데이터의 단순 증가는 최대값이 1.336에서 1.743으로 향상되었으나 잡음이 같이 증가됨을 확인하였다. PET 데이터 재추출 성능은 순차적인 패킷의 payload 값을 시프트연산을 통해 데이터의 위치를 이동시킴으로써 특정 잡음이 제거되거나 대조도가 향상되는 영상을 획득할 수 있었다. 부트스트랩 재추출 기법은 영상의 잡음과 통계적 특성이 개선된 PET 영상을 제공하여 다중영상화시 정합도를 향상시켜 질환의 조기 진단 성능을 향상시킬 수 있을 것으로 기대된다.

소동물 폐종양의 정량적 개선을 위한 내부 움직임 평가 (Estimation of Internal Motion for Quantitative Improvement of Lung Tumor in Small Animal)

  • 유정우;우상근;이용진;김경민;김진수;이교철;박상준;유란지;강주현;지영훈;정용현;김병일;임상무
    • 한국의학물리학회지:의학물리
    • /
    • 제22권3호
    • /
    • pp.140-147
    • /
    • 2011
  • 이 연구에서는 폐종양의 정량적 개선을 위하여 분자체를 이용하여 내부 움직임을 측정하고 평가된 데이터를 기반으로 소동물 PET 영상내의 폐종양을 국소화하고자 하였다. 소동물 폐 영역의 내부 움직임은 방사성물질을 흡착한 분자체를 이용하여 소동물 폐 영역에 부착함으로써 구현하였다. 폐 영역의 내부 움직임 표적으로 사용된 분자체는 약 37 kBq의 Cu-64를 흡착시켜 폐종양을 모사하였다. 소동물 PET 영상은 Siemens Inveon 스캐너를 이용하여 획득하였으며 외부 움직임 데이터는 트리거 생성 장치인 BioVet을 이용하였다. SD-Rat PET 영상은 $^{18}F$-FDG 37 MBq/0.2 mL을 미정맥으로 주사하고 60분 후 20분간 데이터를 획득하였다. 리스트모드 데이터의 각 선응답은 외부 트리거 장치에 의해 획득된 트리거신호를 이용하여 2 bin에서 16 bin으로 사이노그램을 획득하였다. 획득된 사이노그램 데이터는 OSEM 2D 알고리즘을 이용하여 4회의 반복으로 재구성하였다. 종양의 정량적 분석을 위한 PET 영상은 종양을 묘사한 분자체 영역에 관심영역을 설정하고 계수와 SNR 그리고 FWHM을 이용하여 평가하였다. 움직임 표적으로 사용된 분자체의 크기는 $1.59{\times}2.50mm$이었으며, 기준 영상으로 획득한 체외 분자체 수직 및 수평 FWHM은 $2.91{\times}1.43mm$이었다. 정적영상과 4 bin 그리고 8 bin 영상에서의 수직 FWHM은 각각 3.90 mm, 3.74 mm, 3.16 mm이었으며 수평 FWHM은 각각 2.21 mm, 2.06 mm, 1.60 mm이었다. 정적영상, 4 bin, 8 bin, 12 bin 그리고 16 bin의 계수 값은 각각 4.10, 4.83, 5.59, 5.38, 5.31이었다. 정적영상, 4 bin, 8 bin, 12 bin 그리고 16 bin의 SNR은 4.18, 4.05, 4.22, 3.89, 3.58이었다. FWHM은 게이트 수의 증가에 따라 계속 향상됨을 확인하였다. 그러나 계수 값과 SNR은 게이트 수의 증가에 따라 계속 향상되지 않고 특정 bin 수에서 가장 높은 값을 보여 소동물 폐 영역에서의 종양 영상화시 SNR의 손실을 최소화하면서 향상된 계수 값을 얻을 수 있는 게이트 수를 획득하였다. 내부 움직임 측정은 최적화된 종양 국소화 영상을 획득할 수 있으며 외부 움직임 모니터링 시스템을 사용하지 않고 장기별 움직임 예측 모델링을 위한 유용한 방법이 될 것으로 기대된다.

다중가우시안혼합모델을 이용한 소동물 심근경색 PET 영상의 정량적 평가 기술 (Quantitative Assessment Technology of Small Animal Myocardial Infarction PET Image Using Gaussian Mixture Model)

  • 우상근;이용진;이원호;김민환;박지애;김진수;김종국;강주현;지영훈;최창운;임상무;김경민
    • 한국의학물리학회지:의학물리
    • /
    • 제22권1호
    • /
    • pp.42-51
    • /
    • 2011
  • 전통적으로 심근 생존능을 식별하고 심근 관류를 정확히 평가하기 위한 도구로 핵의학영상이 이용되고 있으나 경색영역을 정의하기에는 어려움이 있다. 이에 본 연구에서는 극성지도의 분포를 분석하여 특성에 맞는 적응적 임계값을 이용하여 심근경색 모델을 정량적으로 평가하고자 하였다. 쥐 심근경색 모델은 왼쪽 관상동맥을 결찰시켜 제작하였다. 소동물PET 영상은 37 MBq $^{18}F$-FDG를 쥐의 꼬리정맥에 주사한 후 60분 섭취 후 Siemens Inveon SPECT/PET 스캐너를 이용하여 20분 동안 ECG 신호와 함께 획득하였고, OSEM 2D 알고리즘을 이용하여 재구성하였다. PET 영상의 심근 극성지도는 Siemens QGS 소프트웨어에 적합한 형식으로 변환 후 자동으로 심근 벽을 설정하여 작성하였다. 심근경색영역의 기준데이터는 TTC 염색으로 설정하였으며 전체 좌심실대비 염색된 영역의 백분율로 획득하였다. 최적의 임계값 설정을 위해 절대치 설정 방법, Otsu 알고리즘, 다중가우시안혼합모델(Multi Gaussian mixture model, MGMM)을 이용하여 평가하였다. 절대치 설정 방법은 10~90%까지 10%단위로 미리 정의 된 임계값을 이용하였고, Otsu 알고리즘은 영상 내에서 두 군집의 분산을 최대로 하는 임계값으로 설정하였다. MGMM 방법은 영상의 화소 강도를 분석하여 여러 개의 가우시안 분포함수(MGMM2, $\cdots$ MGMM4)로 반복 수행하여 최적의 가우시안 분포를 구하여 적응적 임계값을 설정하였다. 극성지도 평가지표는 각각의 알고리즘에서 측정된 임계값을 이용하여 이진화하고 전체 극성지도와 경색영역의 백분율로 획득한 후, TTC 염색으로 획득된 기준데이터와의 차이를 비교하였다. 그 차이는 절대치 방법의 20%에서 $7.04{\pm}3.44%$, 30%에서 $3.87{\pm}2.09%$, 40%에서 $2.15{\pm}2.07%$이었다. Otsu 방법은 $3.56{\pm}4.16%$이었으며 MGMM 방법은 $2.29{\pm}1.94%$이었다. 소동물 PET 극성지도에서는 30% 임계값이 조직학적 데이터와 비교하여 가장 작은 차이를 보였다. 그러나 TTC 염색으로 측정한 크기가 10% 이하에서는 MGMM 방법이 절대치 방법보다 작은 차이를 보였다(MGMM: 0.006%, 절대치방법: 0.59%). 이 연구에서는 심근경색 모델 평가를 위하여 생체영상 극성지도에서 다중가우시안혼합모델을 이용하여 평가하고자 하였다. MGMM은 사용자의 선택 없이도 자동적으로 영상 특성을 고려하여 적응적 임계값을 찾아주는 방법으로 극성지도에서 심근경색을 평가하는데 도움이 될 것으로 기대된다.