• Title/Summary/Keyword: Inventory Cycle

Search Result 267, Processing Time 0.028 seconds

Re-engineering Distribution Using Web-based B2B Technology

  • Kim, Gyeung-min
    • 한국유통학회지:유통연구
    • /
    • 제6권1호
    • /
    • pp.22-35
    • /
    • 2001
  • The focus of Business Process Re-engineering (BPR) has been extended to inter-business process that cuts across independent companies. Combined with Supply Chain Management (SCM), inter-business process reengineering (IBPR) focuses on synchronization of business activities among trading partners to achieve performance improvements in inventory management and cycle time. This paper reviews the business process reengineering movement from the historical perspective and presents a case of inter-business process reengineering using the latest internet-based Business-to- Business (B2B) technology based on Collaborative Planning, Forecasting, and Replenishment (CPFR). The case demonstrates how CPFR technology reengineers the distribution process between Heineken USA and its distributors. As world's first implementor of web-based collaborative planning system, Heineken USA reduces cycle time from determining the customer need to delivery of the need by 50% and increases sales revenue by 10%. B2B commerce on the internet is predicted to grow from $90 billion in 1999 to $2.0 trillion in 2003. This paper provides the management with the bench-marking case on inter-business process reengineering using B2B e-commerce technology.

  • PDF

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

LCA 기반 PSC 교량의 환경부하 특성분석에 대한 연구 (An Analysis of the Characteristics of Environmental Impact for PSC Beam Bridges using Life Cycle Assessment)

  • 조남호;윤원건;이완렬;김경주
    • 대한토목학회논문집
    • /
    • 제36권2호
    • /
    • pp.297-305
    • /
    • 2016
  • 2015년부터 한국에서 시행된 "탄소배출권 거래제"로 인해 각 분야에서 환경문제에 대응하고자 하는 움직임이 커지고 있다. 특히 환경부하량의 정확한 산출이 어려운 건설 분야에서는 ISO 14040 Series의 LCA (Life Cycle Assessment)를 적용하여 환경부하량을 산출하고자 하는 움직임이 지속되고 있다. 본 연구에서는 PSC beam 교량의 시공중 발생하는 환경부하량을 전과정 평가(Life Cycle Assessment, LCA) 방법론을 기반으로 분석하였다. 총 34개의 교량을 대상으로 분석한 결과, 건설 자재별 환경부하량은 레미콘(53.3%), 선재(9.6%), 철근(7.8%), 시멘트(6.8%) 합판(5.5%), 에너지(5.2%) 순으로 도출되었으며, 환경 범주별 환경부하량은 지구온난화(45.5%), 자원고갈(30.4%), 인체독성(10.5%), 광화학산화물생성(8.9%) 순으로 도출되었다. 향후 LCA를 기획 및 설계 단계에서 도입한다면, 환경부하를 고려한 의사결정을 수행할 수 있을 것으로 기대된다.

Water Footprint 개념을 이용한 가전제품의 수자원 사용량 산정 (세탁기를 중심으로) (A Study on the Evaluation of Water Consumption in Electric Appliances using Water Footprint - Focusing on Washing Machine -)

  • 조현정;김우람;박지형;황용우
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, by using the Water footprint technique, the water consumption by washing machines, which holds higher ranks in using water than any other electric appliances, was analyzed during their life cycle. The life cycle is defined as raw materials production step, manufacturing step, and using step. In raw materials production step, Input materials were researched by using LCI DB(Life Cycle Inventory Database) and the water consumption was calculated with consideration of approximately 65% Input materials which were based weight. In manufacturing step, the water consumption was calculated by the amount of energy used in assembly factories and components subcontractors and emission factor of energy. In using step, referring to guidelines on carbon footprint labeling, the life cycle is applied as 5 years for a washing machine and 218 cycles for annual bounds of usage. The water and power consumption for operating was calculated by referring to posted materials on the manufacture's websites. The water consumption by nation unit was calculated with the result of water consumption by a unit of washing machine. As a result, it shows that water consumption per life cycle s 110,105 kg/unit. The water consumption of each step is 90,495 kg/unit for using, 18,603 kg for raw materials production and 1,006 kg/unit for manufacturing, which apparently shows that the using step consume the most water resource. The water consumption by nation unit is 371,269,584tons in total based on 2006, 83,385,649 tons in both steps of raw material production and manufacturing, and 287,883,935 tons in using step.

국내 폐자동차 처리시스템에 대한 전과정평가 (Life Cycle Assessment on the End-of-Life Vehicle Treatment System in Korea)

  • 홍석진;정기모;홍존희;윤주호;허탁
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.105-112
    • /
    • 2005
  • This study aims at evaluating the environmental impacts stemmed from the End-of-Life Vehicle(ELV) treatment systems in Korea, using Life Cycle Assessment(LCA) method. In this study, both environmental burden from the ELV dismantling process & recycling processes and environmental benefit which were derived from the avoided environmental impacts by substituting recycled materials for virgin materials were considered. First of all, the key issues which were defined as the environmental aspects that account for more than $1\%$ out of the total environmental impacts were identified from the Life Cycle Impact Assessment(LCIA). $CO_2$, crude oil, natural gas, coal, etc. were found out to be the key issue parameters. From the LCI Analysis and LCIA studies, it was shown that the significant environmental aspects were related with the recycling process of ferro scrap, the shredding process of compressed car bodies and the dismantling process of end-of-life engines. In particular, the recycling process of ferro scrap has the most significant effects on the environmental impacts of the ELV treatment systems. Based on these results, it is recommended to improve the recycling process of ferro scrap in order to make the ELV treatment systems more environmentally sound.

Impact of Working Capital Management on Firm Performance in Different Business Cycles: Evidence from Vietnam

  • NGUYEN, Co Trong
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권12호
    • /
    • pp.863-867
    • /
    • 2020
  • This study was conducted on financial data of 38 economic groups listed on Vietnam's stock market for the period 2009 - 2019 and it aims to provide an empirical evidence on the impact of working capital management policy on performance in all phases of the economic cycle of Vietnamese economic groups. The study uses FGLS estimation method with 2 dependent variables ROA, GOP, independent variables including INV, AR, AP, CCC, dummy variable representing different phases of the economic cycle, variables Control includes CAT, CR, LEV, SZ, GR. Research shows that the greater the level of investment by companies in liquid assets corresponding to a certain level of activity (shown by average days of inventory (INV), average days of collection. (AR), cash flow cycle (CCC)) the lower the rate of return on assets. The study also provides additional evidence of the negative effects of economic crisis on the performance of economic groups. The study also shows that the number of short-term asset cycles has a positive impact on operational efficiency, and the level of debt use has a negative impact on operational efficiency. This result implies that the managers of economic groups can increase the efficiency of businesses through a reasonable working capital policy.

데이터마이닝 알고리즘을 이용한 제품수명주기 예측 : 의류산업 적용사례 (Prediction of Product Life Cycle Using Data Mining Algorithms : A Case Study of Clothing Industry)

  • 이슬기;강지훈;이한규;주태우;오시연;박성욱;김성범
    • 대한산업공학회지
    • /
    • 제40권3호
    • /
    • pp.291-298
    • /
    • 2014
  • Demand forecasting plays a key role in overall business activities such as production planning, distribution management, and inventory management. Especially, for a fast-changing environment of the clothing industry, logical forecasting techniques are required. In this study, we propose a procedure to predict product life cycle using data mining algorithms. The proposed procedure involves three steps : extracting key variables from profiles, clustering, and classification. The effectiveness and applicability of the proposed procedure were demonstrated through a real data from a leading clothing company in Korea.

A SCENARIO STUDY ON MIXING STRATEGIES OF FAST REACTOR WITH LOW AND HIGH CONVERSION RATIOS

  • Jeong, Chang Joon;Jo, Chang Keun;Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.367-376
    • /
    • 2013
  • This study investigated mixing scenarios of the low and high conversion ratios (CRs) of fast reactors (FRs). The fuel cycle was modeled so as to minimize the spent fuel (SF) or transuranics (TRU) inventories. The scenarios were modeled for a single low CR of 0.61 and a high CR of 1.0. The study also investigated the mixing scenario of low-high CR and/or high-low CR. The SF and TRU inventories, associated with different scenarios, were compared to those of the light water reactor (LWR) once-through (OT) case. Also, the important isotope concentration and long-term heat (LTH) load were calculated and compared to those of the OT cycle. As a result, it is known that the deployment of FRs of low CR burns more TRU and results in a reduction of the out-of-pile TRU inventory and LTH with low deployment capacity. This study shows that the mixing strategy of FRs of low and high CR can reduce the SF and TRU inventories with lower deployment capacity as compared with a single deployment of FRs of high CR.

SAFETY OF THE SUPER LWR

  • Ishiwatari, Yuki;Oka, Yoshiaki;Koshizuka, Seiichi
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.257-272
    • /
    • 2007
  • Supercritical water-cooled reactors (SCWRs) are recognized as a Generation IV reactor concept. The Super LWR is a pressure-vessel type thermal spectrum SCWR with downward-flow water rods and is currently under study at the University of Tokyo. This paper reviews Super LWR safety. The fundamental requirement for the Super LWR, which has a once-through coolant cycle, is the core coolant flow rate rather than the coolant inventory. Key safety characteristics of the Super LWR inhere in the design features and have been identified through a series of safety analyses. Although loss-of-flow is the most important abnormality, fuel rod heat-up is mitigated by the "heat sink" and "water source" effects of the water rods. Response of the reactor power against pressurization events is mild due to a small change in the average coolant density and flow stagnation of the once-through coolant cycle. These mild responses against transients and also reactivity feedbacks provide good inherent safety against anticipated-transient-without-scram (ATWS) events without alternative actions. Initiation of an automatic depressurization system provides effective heat removal from the fuel rods. An "in-vessel accumulator" effect of the reactor vessel top dome enhances the fuel rod cooling. This effect enlarges the safety margin for large LOCA.

Evaluation of the reutilization of used nuclear fuel in a PWR core without reprocessing

  • Zafar, Zafar Iqbal;Park, Yun Seo;Kim, Myung Hyun
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.345-355
    • /
    • 2019
  • Use of the reconstructed fuel assemblies from partially burnt nuclear fuel pins is analyzed. This reutilization option is a potential candidate technique to make better use of the nuclear resources. Standard two step method is used to calculate node i.e. fuel assembly average burnup and then pin by pin ${\eta}$ values are reconstructed to ascertain the residual reactivity in the used fuel pins. Fuel pins with ${\eta}$ > 1:0 are used to reconstruct to-be-reused fuel assemblies. These reconstructed fuel assemblies are burnt during the cycle 3, 4, 5 and 6 of a 1000 MW PWR core by replacing fresh, once burnt and twice burnt fuel assemblies of the reference core configurations. It is concluded that using reconstructed fuel assemblies for the fresh fuel affect dearly on the cycle length (>50 EFPD) when more than 16 fresh fuel assemblies are replaced. However, this loss is less than 20 days if the number of fresh fuel assemblies is less than eight. For the case of replacing twice burned fuel, cycle length could be increased slightly (10 days or so) provided burnt fuel pins from other reactors were also available. Reactor safety parameters, like axial off set (< ${\pm}10%$), Doppler temperature coefficient (<0), moderator temperature coefficient at HFP (<0) are always satisfied. Though, 2D and 3D pin peaking factors are satisfied (<1:55) and (<2:52) respectively, for the cases using eight or less reconstructed fuel assemblies only.