• Title/Summary/Keyword: Invariant feature

Search Result 433, Processing Time 0.031 seconds

Design and Implementation of Video Search System robust to Brightness and Rotation Changes Based on Ferns Algorithm (Ferns 알고리즘 기반 밝기 및 회전 변화에 강인한 영상검색 시스템 설계 및 구현)

  • Yoon, Seok-Hwan;Shim, Jae-Sung;Park, Seok-Cheon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1679-1689
    • /
    • 2016
  • Recently, due to the rapid development of multimedia technologies, as image data has been extensive and large-scaled, the problem of increasing the time needed to retrieve the desired image is gradually critical. Image retrieval system that allows users to quickly and accurately search for the desired image information has been researched for a long time. However, in the case of content-based image retrieval representative Color Histogram, Color Coherence Vectors (CCV), Scale Invariant Feature Transform (SIFT) used in sensitive to changes in brightness, rotation, there is a problem that can occur misrecognized division off the power. In this paper, in order to evaluate the video retrieval system proposed, no change in brightness, respectively 0°, 90°, 180°, 270° rotated brightness up based on the case of changing, when the brightness down the results were compared with the performance evaluation of the system is an average of about 2% to provide the difference in performance due to changes in brightness, color histogram is an average of about 12.5%, CCV is an average of about 12.25%, it appeared in the SIFT is an average of about 8.5%, Thus, the proposed system of the variation width of the smallest in average about 2%, was confirmed to be robust to changes in the brightness and rotation than the existing systems.

Rotation Invariant Face Detection Using HOG and Polar Coordinate Transform

  • Jang, Kyung-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.85-92
    • /
    • 2021
  • In this paper, a method for effectively detecting rotated face and rotation angle regardless of the rotation angle is proposed. Rotated face detection is a challenging task, due to the large variation in facial appearance. In the proposed polar coordinate transformation, the spatial information of the facial components is maintained regardless of the rotation angle, so there is no variation in facial appearance due to rotation. Accordingly, features such as HOG, which are used for frontal face detection without rotation but have rotation-sensitive characteristics, can be effectively used in detecting rotated face. Only the training data in the frontal face is needed. The HOG feature obtained from the polar coordinate transformed images is learned using SVM and rotated faces are detected. Experiments on 3600 rotated face images show a rotation angle detection rate of 97.94%. Furthermore, the positions and rotation angles of the rotated faces are accurately detected from images with a background including multiple rotated faces.

FRS-OCC: Face Recognition System for Surveillance Based on Occlusion Invariant Technique

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.288-296
    • /
    • 2021
  • Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.

Analysis of Computer Vision Application for CGRA Mapping : SIFT (재구성형 프로세서 맵핑을 위한 컴퓨터 비전 응용 분석 : SIFT)

  • Heo, Ingoo;Kim, Yongjoo;Lee, Jinyong;Cho, Yeongpil;Paek, Yunheung;Ko, Kwangman
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.5-8
    • /
    • 2011
  • 최근 영상이나 이미지로부터 사용자가 원하는 정보를 추출해 내고 재구성 하는 영상 인식, 증강 현실 등의 컴퓨터 비전(Computer Vision) 응용들이 각광을 받고 있다. 이러한 컴퓨터 비전 응용들은 그 동안 많은 알고리즘들의 연구를 통해 꾸준히 개선되고 향상되어 왔으나, 많은 계산량을 요구하기 때문에 임베디드 시스템에서는 널리 쓰이기 힘들었다. 하지만 최근 들어, 스마트폰 등의 모바일 기기에서의 계산 처리 능력이 향상 되고, 소비자 수요가 증가하면서, 이러한 컴퓨터 비전 응용은 점점 모바일 기기에서 널리 쓰이게 되고 있다. 하지만, 여전히 이러한 컴퓨터 응용을 수행하기 위한 계산양은 부족하기 때문에, 충분한 연산량을 제공하기 위한 방법론들이 다양하게 제시되고 있다. 본 논문에서는 이러한 컴퓨터 응용을 위한 프로세서 구조로서 재구성형 프로세서(Reconfigurable Architecture)를 제안한다. 컴퓨터 비전 응용 중 사물 인식 분야에서 널리 쓰이는 SIFT(Scale Invariant Feature Transformation)을 분석하고 이를 재구성형 프로세서에 맵핑하여 성능 향상을 꾀하였다. SIFT의 주요 커널들을 재구성형 프로세서 맵핑한 결과 최소 6.5배에서 최대 9.2배의 성능 향상을 이룰 수 있었다.

A Unit Selection Methods using Flexible Break in a Japanese TTS (일본어 합성기에서 유동 Break를 이용한 합성단위 선택 방법)

  • Song, Young-Hwan;Na, Deok-Su;Kim, Jong-Kuk;Bae, Myung-Jin;Lee, Jong-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.403-408
    • /
    • 2007
  • In a large corpus-based speech synthesizer, a break, which is a parameter influencing the naturalness and intelligibility, is used as an important feature during a unit selection process. Japanese is a language having intonations, which ate indicated by the relative differences in pitch heights and the APs(Accentual Phrases) are placed according to the changes of the accents while a break occurs on a boundary of the APs. Although a break can be predicted by using J-ToBI(Japanese-Tones and Break Indices), which is a rule-based or statistical approach, it is very difficult to predict a break exactly due to the flexibility. Therefore, in this paper, a method is to conduct a unit search by dividing breaks into two types, such as a fixed break and a flexible break, in order to use the advantages of a large-scale corpus, which includes various types of prosodies. As a result of an experiment, the proposed unit selection method contributed itself to enhance the naturalness of synthesized speeches.

Learning-based Detection of License Plate using SIFT and Neural Network (SIFT와 신경망을 이용한 학습 기반 차량 번호판 검출)

  • Hong, Won Ju;Kim, Min Woo;Oh, Il-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.187-195
    • /
    • 2013
  • Most of former studies for car license plate detection restrict the image acquisition environment. The aim of this research is to diminish the restrictions by proposing a new method of using SIFT and neural network. SIFT can be used in diverse situations with less restriction because it provides size- and rotation-invariance and large discriminating power. SIFT extracted from the license plate image is divided into the internal(inside class) and the external(outside class) ones and the classifier is trained using them. In the proposed method, by just putting the various types of license plates, the trained neural network classifier can process all of the types. Although the classification performance is not high, the inside class appears densely over the plate region and sparsely over the non-plate regions. These characteristics create a local feature map, from which we can identify the location with the global maximum value as a candidate of license plate region. We collected image database with much less restriction than the conventional researches. The experiment and evaluation were done using this database. In terms of classification accuracy of SIFT keypoints, the correct recognition rate was 97.1%. The precision rate was 62.0% and recall rate was 50.2%. In terms of license plate detection rate, the correct recognition rate was 98.6%.

Hardware Design of SURF-based Feature extraction and description for Object Tracking (객체 추적을 위한 SURF 기반 특이점 추출 및 서술자 생성의 하드웨어 설계)

  • Do, Yong-Sig;Jeong, Yong-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.83-93
    • /
    • 2013
  • Recently, the SURF algorithm, which is conjugated for object tracking system as part of many computer vision applications, is a well-known scale- and rotation-invariant feature detection algorithm. The SURF, due to its high computational complexity, there is essential to develop a hardware accelerator in order to be used on an IP in embedded environment. However, the SURF requires a huge local memory, causing many problems that increase the chip size and decrease the value of IP in ASIC and SoC system design. In this paper, we proposed a way to design a SURF algorithm in hardware with greatly reduced local memory by partitioning the algorithms into several Sub-IPs using external memory and a DMA. To justify validity of the proposed method, we developed an example of simplified object tracking algorithm. The execution speed of the hardware IP was about 31 frame/sec, the logic size was about 74Kgate in the 30nm technology with 81Kbytes local memory in the embedded system platform consisting of ARM Cortex-M0 processor, AMBA bus(AHB-lite and APB), DMA and a SDRAM controller. Hence, it can be used to the hardware IP of SoC Chip. If the image processing algorithm akin to SURF is applied to the method proposed in this paper, it is expected that it can implement an efficient hardware design for target application.

Effcient Neural Network Architecture for Fat Target Detection and Recognition (목표물의 고속 탐지 및 인식을 위한 효율적인 신경망 구조)

  • Weon, Yong-Kwan;Baek, Yong-Chang;Lee, Jeong-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2461-2469
    • /
    • 1997
  • Target detection and recognition problems, in which neural networks are widely used, require translation invariant and real-time processing in addition to the requirements that general pattern recognition problems need. This paper presents a novel architecture that meets the requirements and explains effective methodology to train the network. The proposed neural network is an architectural extension of the shared-weight neural network that is composed of the feature extraction stage followed by the pattern recognition stage. Its feature extraction stage performs correlational operation on the input with a weight kernel, and the entire neural network can be considered a nonlinear correlation filter. Therefore, the output of the proposed neural network is correlational plane with peak values at the location of the target. The architecture of this neural network is suitable for implementing with parallel or distributed computers, and this fact allows the application to the problems which require realtime processing. Net training methodology to overcome the problem caused by unbalance of the number of targets and non-targets is also introduced. To verify the performance, the proposed network is applied to detection and recognition problem of a specific automobile driving around in a parking lot. The results show no false alarms and fast processing enough to track a target that moves as fast as about 190 km per hour.

  • PDF

Matching Points Filtering Applied Panorama Image Processing Using SURF and RANSAC Algorithm (SURF와 RANSAC 알고리즘을 이용한 대응점 필터링 적용 파노라마 이미지 처리)

  • Kim, Jeongho;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.144-159
    • /
    • 2014
  • Techniques for making a single panoramic image using multiple pictures are widely studied in many areas such as computer vision, computer graphics, etc. The panorama image can be applied to various fields like virtual reality, robot vision areas which require wide-angled shots as an useful way to overcome the limitations such as picture-angle, resolutions, and internal informations of an image taken from a single camera. It is so much meaningful in a point that a panoramic image usually provides better immersion feeling than a plain image. Although there are many ways to build a panoramic image, most of them are using the way of extracting feature points and matching points of each images for making a single panoramic image. In addition, those methods use the RANSAC(RANdom SAmple Consensus) algorithm with matching points and the Homography matrix to transform the image. The SURF(Speeded Up Robust Features) algorithm which is used in this paper to extract featuring points uses an image's black and white informations and local spatial informations. The SURF is widely being used since it is very much robust at detecting image's size, view-point changes, and additionally, faster than the SIFT(Scale Invariant Features Transform) algorithm. The SURF has a shortcoming of making an error which results in decreasing the RANSAC algorithm's performance speed when extracting image's feature points. As a result, this may increase the CPU usage occupation rate. The error of detecting matching points may role as a critical reason for disqualifying panoramic image's accuracy and lucidity. In this paper, in order to minimize errors of extracting matching points, we used $3{\times}3$ region's RGB pixel values around the matching points' coordinates to perform intermediate filtering process for removing wrong matching points. We have also presented analysis and evaluation results relating to enhanced working speed for producing a panorama image, CPU usage rate, extracted matching points' decreasing rate and accuracy.

Light-Ontology Classification for Efficient Object Detection using a Hierarchical Tree Structure (효과적인 객체 검출을 위한 계층적 트리 구조를 이용한 조명 온톨로지 분류)

  • Kang, Sung-Kwan;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.215-220
    • /
    • 2012
  • This paper proposes a ontology of tree structure approach for adaptive object recognition in a situation-variant environment. In this paper, we introduce a new concept, ontology of tree structure ontology, for context sensitivity, as we found that many developed systems work in a context-invariant environment. Due to the effects of illumination on a supreme obstinate designing context-sensitive recognition system, we have focused on designing such a context-variant system using ontology of tree structure. Ontology can be defined as an explicit specification of conceptualization of a domain typically captured in an abstract model of how people think about things in the domain. People produce ontologies to understand and explain underlying principles and environmental factors. In this research, we have proposed context ontology, context modeling, context adaptation, and context categorization to design ontology of tree structure based on illumination criteria. After selecting the proper light-ontology domain, we benefit from selecting a set of actions that produces better performance on that domain. We have carried out extensive experiments on these concepts in the area of object recognition in a dynamic changing environment, and we have achieved enormous success, which will enable us to proceed on our basic concepts.