• Title/Summary/Keyword: Invaded pest

Search Result 11, Processing Time 0.016 seconds

Food plants suitable for mass rearing of the coconut hispine beetle Brontispa longissima

  • Yamashita, Ai;Winotai, Amporn;Nakamura, Satoshi;Takasu, Keiji
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.1
    • /
    • pp.57-61
    • /
    • 2009
  • The invasive pest Brontispa longissima(Coleoptera: Chrysomelidae), native to Indonesia and Papua New Guinea, has extended its distribution to Australia, Asia and Pacific islands and caused serious leaf damages of the coconut palm Cocos nuciferain the invaded regions. Although biological control using parasitic wasps has successfully reduced population density and leaf damage levels, this pest and its natural enemies have not been efficiently producedin conventional methods using young leaves of C. nucifera. In the present study, we examined suitability of plants easily available in Thailand and Japan for mass rearing of this pest to develop effective mass rearing system of this pest. Mature, green leaves of the palms were also suitable for immature development and adult reproduction of this pest. Since mature leaves of C. nucifera are more abundant and less contaminated with fungus than the unopened leaf buds, mature leaves could be a promising plant diet for mass rearing of B. longissima. Ornamental palms such as Hyophorbe lagenicaulis and Washingtonia filifera were also suitable for immature development and reproduction of B. longissima. Away from palms, the cattail Typha spp. can sustain immature development and adult reproduction of B. longissima. In the area where C. nucifera is rare or not available, W. filifera or Typha spp. would be good food plants for mass rearing of this pest.

  • PDF

On the Scientific Name of the Invaded Planthopper (Hemiptera: Fulgoroidea: Ricaniidae) in Korea (외래침입해충인 갈색날개매미충(노린재목: 꽃매미상과: 큰날개매미충과)의 재동정 결과 보고)

  • Park, Jaekook;Jung, Sunghoon
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.317-323
    • /
    • 2020
  • Brown ricaniid planthopper (Hemiptera: Fulgoroidea) is one of the invaded pests in Korea. However, this species has been misidentified or not identified yet, caused confusions in taxonomy or agroecosystem. In the present study, we collected the specimens occurring in Korea nationwide and taxonomically reviewed. Consequently, we confirmed its scientific name as Ricania sublimata. Herein, a key to the Korean Ricania is provided.

Spatial Distribution Patterns of a Newly Invaded Honeybee Pest, Aethina tumida Murray, 1867 (Coleoptera: Nitidulidae) in an Apiary Where it was First Detected (꿀벌 외래 해충, 작은벌집밑빠진벌레(Aethina tumida Murray, 1867)의 초기 발견 봉장 내 공간 분포 특성)

  • Hong, Seokmin;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.163-170
    • /
    • 2017
  • Small hive beetle (SHB, Aethina tumida Murray (Coleoptera: Nitidulidae) is a honeybee pest infesting combs and stores inside the hive. Contamination of the SHB on Apis mellifera colonies were firstly noticed on September 23, 2016, in Miryang City, Gyeongnam Province in Korea. After that, on October 5, 2016, we investigated the spatial distribution of SHB inside the hive and outside soil within the apiary. Total of 169 beehives were observed. We found all stages of SHB inside or outside of hives. 61% of hives infested with the adult SHB still had live honeybees whereas hives containing larval SHB did not have bees, implying colony destruction In hives with live bees, infestation density was higher as bee population became higher. Coefficient of dispersions (CD) showed significant clumped distribution of infestation among hives. CDs were much higher inside hive than outside soil. Our results indicates SHB could result in honeybee colony collapse it not managed properly. Also even during October, there are new infestation into honeybee colonies and every stage of SHB could still be able to develop. Further detailed analysis of this insect' adaptation in Koran environment could help guide the management strategies of the invaded new pest of honeybee.

Interactions between Pine Needle Gall Midge, Thecodiplosis japonensis (Diptera: Cecidomyiidae), and its Parasitoids in Newly Invaded Areas (솔잎혹파리 확산지역에서 솔잎혹파리와 기생봉의 상호작용)

  • 박영석;정여진;전태수;이범영;이준호
    • Korean journal of applied entomology
    • /
    • v.40 no.4
    • /
    • pp.301-307
    • /
    • 2001
  • The pine needle gall midge (PNGM), Thecodiplosis japonensis Uchida et Inouye, is a serious pest in pine forests in Korea. Since the first report of PNGM infestation in Korea in 1929, the infestation area has been expanded gradually. In 1975 the distribution of PNGM and its parasitoids were surveyed throughout several infested areas in Korea. Annual survey has been made for the rates of gall formation by PNGM and parasitism by its parasitoids at the monitoring sites including newly infested area in 1975 since 1980. These data were used to examine the relationship between PNGM and its parasitoids for newly invaded areas. The gall forming rate of PNGM and the parasitism by the parasitoid were 34.8 and 1.9% in 1975, respectively, while the gall forming rate and the parasitism were 20.7 and 8.9% in 1985, respectively. The relationships of densities between PNGM and its parsitoid were weak in the early stage of dispersion, but the density of parasitoid was with an asymptotic increase along with PNGMs density increase during the observation period for 10 years.

  • PDF

Within0tree Disribution of matsucoccus thunbergianae on Pinus thunbergiana (해송에서의 솔껍질깍지의 벌레 수상분포 양식)

  • 박승찬
    • Korean journal of applied entomology
    • /
    • v.33 no.2
    • /
    • pp.114-121
    • /
    • 1994
  • Population densities of intermediate nymphs and egg saw of Matsucoccus thunbergianae, a major insect pest of Pinus thunbergiona in southern coastal area of Korean peninsula, were est~mated. Tree samples of ca. 10cm D.B.H. were collected from old infestation area and newly invaded area. The numben of plimaly branches per tree were not significantly different by the locality, but those of secondaly and smaller branches were smaller in old infestation area The numbers of intermediate nymphs per tree in old infestation area and in newly invaded area were 10.8 and 13.1 times more than those on the trunk, respectively Approximately between 4, 200 and 208, 500 nymphs per tree were estimated. Men secondaw and smaller bmnch samples collected from the basal part of middle crown height, or from the central or the basal part of lower crown height, the number of samples required for the emr range of 20% were 21 and 11 far 10-20cm and 20-3 crn long branches, respectively. Approx~mately 63.6% of egg sacs of the whole tree were on the trunk. The node/intemode bearing the largest branch had the highest egg sac density; including that, four adjacent nodes/intemodes had ca. 37% of egg saw on the trunk.

  • PDF

Biology of the Mud Shrimp Upogebia major (de Haan, 1841), with Particular Reference to Pest Management for Shrimp Control in Manila Clam Bed in the West Coast of Korea (쏙의 생물학 - 최근 서해안 바지락 양식장에 이상 증식한 쏙의 제거 대책을 중심으로 -)

  • Hong, Jae-Sang
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.323-349
    • /
    • 2013
  • The mud shrimp Upogebia major (Upogebiidae: Decapoda: Crustacea) is a common species on muddy and sandy mud tidal flats in the west coast of Korea. They reside in Y-shaped burrows that can extend up to more than 2 meters below the sediment surface. They feed on suspended detritus carried into their burrow by the beating of their pleopods and captured by their hairy first two pairs of thoracic legs. Mud shrimp burrows provide a habitat for a variety of small organisms such as crabs, shrimps, polychaetes, and mollusks. Ovigerous females are observed from December to May. Females deposit eggs only once per breeding season. They start hatching in March and the pelagic larvae of first zoea appear in March and April, followed by benthic settlement in May. Growth over the first year is rapid, and females deposit their first eggs in the third breeding season, 31 months after their settlement. Adult shrimps live for 4~5 years. Depth of the burrow increases with body length. The deep burrows provide refuge from predators and physical stress, allowing the shrimps to survive for a long time. The mud shrimps supply oxygen-rich water to their deep burrows, and exert a great influence on the structure and metabolism of the tidal flat benthic community. However, recently this type of mud shrimp has posed a serious threat to the Korean clam industry along the west coast of Korea. The extensive burrowing shrimp populations suddenly invaded the tidal flats from 2010 where the clams (Ruditapes philippinarum) are raised. As a consequence, clam production has decreased by about 10% over the past three years in some Korean clam beds. Therefore, the objective of this study is to review the biology of this mud shrimp in order to seek solutions to control the burrowing of these shrimps.

Evaluation of The Susceptibility of Several Insecticides to Honey Bee Pest, Vespa velutina nigrithorax (Hymenoptera: Vespidae) (꿀벌 해충 등검은말벌 방제를 위한 화학 살충제 이용 가능성 평가)

  • Dongeui Hong;Chuleui Jung
    • Korean journal of applied entomology
    • /
    • v.63 no.1
    • /
    • pp.13-23
    • /
    • 2024
  • Vespa velutina nigrithorax du Buysson, 1905 is the invaded species in Korea since 2003. Since its importance as the honey bee pest, beekeepers use insecticides to kill the adult and immature hornets. However, its legality and effectiveness has not been confirmed. This study investigated the susceptibility of insecticides commonly used to control hornets by beekeepers in Korea. Eight insecticides were tested on adult worker and larvae by topical or oral treatment. Adults showed more than 70% mortalities from Clothianidin, Dinotefuran, and Carbosulfan treatment within 30 minutes. Bifenthrin and Cartap hydrochloride showed relatively low toxicity. The median lethal dose (LD50) for Clothianidin, Dinotefuran, and Carbosulfan was 0.29, 0.65, and 2.21 ㎍/bee, respectively. In larval feeding test where 5th instar larvae were fed 3 times every 24 hours, the mortality began after second treatments. After 3rd treatments (72 h), all insecticides showed mortality more than 70%. The LD50 values of Clothianidin, Dinotefuran, and Carbosulfan to V. velutina were approximately 10 to 100 times higher than those to honey bee, Apis mellifera. This study provides the basic information of those chemical toxicities to Vespa hornet and honey bees.

Migratory and Subsequent Generation-related Damage Patterns of Spodoptera frugiperda in Corn Plants in Jeju, South Korea (제주 옥수수에서 열대거세미나방 비래 세대 및 후세대의 피해양상 특성)

  • Heo, Jinwoo;Kim, Subin;Kim, Dong-soon
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.221-228
    • /
    • 2021
  • The fall armyworm (FAW), Spodoptera frugiperda (Smith), is a notorious invasive migratory pest native to the tropics that has recently invaded South Korea with subsequent damage to cornfields. This study was conducted to evaluate the damage patterns on corn plants caused by the migratory and subsequent generations of FAW. The early migrant generation-related infestation rates reached an average of 13.2%, ranging from a minimum of 4.3% ('Allog-i') to a maximum of 33.0% ('Chodang'), depending on the corn cultivar. The proportion of FAW larvae-infested corn plants, in which the FAW survived until the pupal stage was 19.3%. The subsequent FAW generation caused considerable damage to the ears, resulting in 60% of ears with damaged kernels. This damage was markedly different from the nearly negligible damage caused by the migratory generation. The FAW larval dispersion was the most dynamic during the second instar stage and occurred along the same cornrow in line. In addition, we discuss the development of corn pant damage patterns caused by FAW. In summary, the results of the present study would provide useful basic information for the damage analysis of this pest for future studies.

First Report of the Fall Armyworm, Spodoptera frugiperda (Smith, 1797) (Lepidoptera, Noctuidae), a New Migratory Pest in Korea (한국에서 새로운 비래해충 열대거세미나방, Spodoptera frugiperda (Smith) 최초 보고)

  • Lee, Gwan-Seok;Seo, Bo Yoon;Lee, Jongho;Kim, Hyunju;Song, Jeong Heub;Lee, Wonhoon
    • Korean journal of applied entomology
    • /
    • v.59 no.1
    • /
    • pp.73-78
    • /
    • 2020
  • The fall armyworm, Spodoptera frugiperda (Smith, 1797), originated from tropical and subtropical America is one of sporadic agricultural pests in the world. Since the moth has high migration capacity, it rapidly expanded the world distribution such as Africa in 2016, India in 2018, and East-Asian countries in 2019. In Korea, this species was firstly found at maize fields of Jeju Island, in early June 2019, and subsequently detected at many counties of Jeolla-do and Gyeongsang-do in June and July 2019. The first invaded populations of S. frugiperda in Korea were genetically confirmed as one species, S. frugiperda by using a mitochondrial cytochrome oxidase subunit I (COI) gene, and analyzed to be comprised of two haplotypes (hap-1 and hap-2) each belonging to different clades. Among 31 COI sequences, the hap-1 sequence was predominant, accounting for 93.5%.

The Effect of Temperature on the Development of Spodoptera frugiperda (Lepidoptera: Noctuidae) (열대거세미나방 발육에 미치는 온도의 영향)

  • Moon, Hyung Cheol;Choi, Min Kyung;Jang, Su Ji;Lee, Jang Ho;Kim, Ju Hee;Chon, Hyong Gwon
    • Korean journal of applied entomology
    • /
    • v.61 no.2
    • /
    • pp.349-356
    • /
    • 2022
  • Fall armyworm, Spodoptera frugiperda, is a invasive migratory pest of native to the tropical and sub-tropical regions that has recently invaded Korea with damage to cornfield. The study was conducted to investigate the development periods of S. frugiperda on artificial diet at six different temperatures. The developmental period from eggs to adult at 18, 21, 24, 27, 30 and 32℃ was 79.8, 54.2, 34.3, 28.4, 24.6 and 24.0 days, respectivery and decreased with increasing temperature. The pupal periods of females were shorter than males. Most of the larvae developed through six instar, but the ratio of 7 or more instar increased at low temperatures. The relationship between the development rate and temperature was fitted with by linear regression analysis. The lower development threshold for egg and larva development was 12.9℃ and 11.3℃, respectively, 12.6℃ for pupae and 11.8℃ for egg-to-adult development. The effective accumulative temperature for the development of the respective life cycle stages were 37.0 DD for eggs, 286.3 DD for larvae, 132.2 DD for pupae and 456.8 DD egg-to-adult development.