• Title/Summary/Keyword: Inundation analysis model

Search Result 216, Processing Time 0.019 seconds

Analysis of Inundation Causes in Urban Area based on Application of Prevention Performance Objectives (도시유역에서의 방재성능목표 적용과 침수원인 분석)

  • kim, Jong-Sub
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • The purpose of this study is to analyze quantitatively the inundation causes by applying the prevention of performance objectives using the urban storm water runoff model XP-SWMM. The model was built by using DTM and storm sewer-network with the storm sewer and geo-data of the study area as input-data to assess the current performance of prevention. An analysis of the causes of the inundation by the frequency and the rainfall-duration. As a result, lack of pipe capacity due to flooding, as well as inundation heavier that the backwater rainfall occurs due to the rise of water level of outside. For solve the inundation damage, It is necessary to improvement pipe of capacity lack and installation of a flood control channel.

Development of a Raster-based Two-dimensional Flood Inundation Model (래스터 기반의 2차원 홍수범람 모형의 개발)

  • Lee, Gi-Ha;Lee, Seung-Soo;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.155-163
    • /
    • 2010
  • The past researches on flood inundation simulation mainly focused on development of numerical models based on unstructured mesh networks to improve model performances. However, despite the accurate simulation results, such models are not suitable for real-time flood inundation forecasting due to a huge computational burden in terms of geographic data processing. In addition, even though various types of vector and raster data are available to be compatible with flood inundation models for post-processes such as flood hazard mapping and flood inundation risk analysis, the unstructured mesh-based models are not effective to fully use such information due to data incommensurability. Therefore, this study aims to develop a raster-based two-dimensional inundation model; it guarantees computational efficiency because of direct application of DEM for flood inundation modeling and also has a good compatibility with various types of raster data, compared to a commercial model such as FLUMEN. We applied the model to simulate the BaekSan levee break in the Nam river during a flood period from August 10 to 13, 2002. The simulation results showed a good agreement with the field-surveyed inundation area and were also very similar with results from the FLUMEN. Moreover, the model provided physically-acceptable velocity vectors with respect to inundating and returning flows due to the difference of water level between channel and lowland.

The Use of Satellite Image for Uncertainty Analysis in Flood Inundation Mapping (홍수범람도 불확실성 해석을 위한 인공위성사진의 활용)

  • Jung, Younghun;Ryu, Kwanghyun;Yi, Choongsung;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.549-557
    • /
    • 2013
  • An flood inundation map is able to convey spatial distribution of inundation to a decision maker for flood risk management. A roughness coefficient with unclear values and a discharge obtained from the stage-discharge rating equation are key sources of uncertainty in flood inundation mapping by using a hydraulic model. Also, the uncertainty analysis needs an observation for the flood inundation, and satellite images is useful to obtain spatial distribution of flood. Accordingly, the objective of this study is to quantify uncertainty arising roughness and discharge in flood inundation mapping by using a hydraulic model and a satellite image. To perform this, flood inundations were simulated by HEC-RAS and terrain analysis, and ISODATA (Iterative Self-Organizing Data Analysis) was used to classify waterbody from Landsat 5TM imagery. The classified waterbody was used as an observation to calculate F-statistic (likelihood measure) in GLUE (Generalized Likelihood Uncertainty Estimation). The results from GLUE show that flood inundation areas are 74.59 $km^2$ for lower 5 % uncertainty bound and 151.95 $km^2$ for upper 95% uncertainty bound, respectively. The quantification of uncertainty in flood inundation mapping will play a significant role in realizing the efficient flood risk management.

An Analysis of Agricultural Landuse Suitability Using Landuse Limitation Factors - A Case Study of Ibang-myeon, Changnyeong-gun, Kyungsangnam-do - (토지이용 제한인자를 활용한 농업적 토지이용 적합성 분석 - 경상남도 창녕군 이방면을 대상으로 -)

  • Jang, Gab-Sue;Park, In-Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.357-372
    • /
    • 2006
  • The excessive land activities in farming can cause soil erosion, inundation by a flood, and fallow. So far land evaluation has been analyzed using the land use limitation derived from the excessive land activities. This study was done for evaluating the agricultural fields by using 3 land use limitations, inundation potential, soil erodibility potential, and fallow potential. The study area is Ibang-myeon, Changnyeong-gun, Gyeongnam-province, Korea. A logistic regression model was applied to recognize the inundation potential by a flood in the Nakdong river basin. And potential soil erodibility index (PSEI) was derived from USLE model to analyze the soil erodibility potential. And a probability model from a logistic regression model was applied to detect the fallow potential. Therefore, we found 220.7ha for the 4th grade and 86.1ha for the 5th grade was analyzed as water damage potential. Large area near Nakdong river have problem to grow the rice due to the damage by water inundation. And 213.6ha for the 3rd grade and 103.3ha for 4th grade was detected as a result of the analysis of soil erosion potential. The soil erosion potential was high when within-field integrity of soil was not stable, or the kinetic energy was high or the slope length was long due to a steep slope of a specific land. And 869.1ha for 3rd grade, 174.9ha for 4th grade, and 110.6ha for 5th grade was detected to be distributed having the fallow potential. Especially, a village, having a steep mountain, had 249.5ha for the 3rd grade, which was 28.7% of total area showing the 3rd grade. Finally, Three villages, including An-ri, Geonam-ri, Songgok-ri, showed they had largest area of the suitable land in the study area. These villages had similar topographic condition where they were far from Nakdong river, and they had relatively higher elevation and flat lands.

Development of 2D inundation model based on adaptive cut cell mesh (K-Flood) (적응적 분할격자 기반 2차원 침수해석모형 K-Flood의 개발)

  • An, Hyunuk;Jeong, Anchul;Kim, Yeonsu;Noh, Joonwoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.853-862
    • /
    • 2018
  • An adaptive cut-cell grid based 2D inundation analysis model, K-Flood, is developed in this study. Cut cell grid method divides a grid into a flow area and a non-flow area depending the characteristics of the flows. With adaptive mesh refinement technique cut cell method can represent complex flow area using relatively small number of cells. In recent years, the urban inundation modeling using high resolution and fine quality data is increasing to achieve more accurate flood analysis or flood forecasting. K-Flood has potential to simulate such complex urban inundation using efficient grid generation technique. A finite volume numerical scheme of second order accuracy for space and time was applied. For verification of K-Flood, 1) shockwave reflex simulation by circular cylinder, 2) urban flood experiment simulation, 3) Malpasset dam collapse simulation are performed and the results are compared with observed data and previous simulation results.

An analysis of Flood Inundation using Query and Mathematical Method (Query 및 Mathematical 기법을 이용한 홍수범람 해석)

  • Jeong, Ha-Ok;Park, Sang-Woo;Choo, Tai-Ho;Park, Kun-Chul
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, it has been intended to present the ways to improve some problems such as the difficulty of using the program which had got from the existing study, the computation and application of a lot of parameter and the complicated processing which need to be more simplified. Also It has been tried to bring up the ways to make a flood inundation map and a detailed inundation analysis which could reduce the risk factors. We selected an Anseong-Cheon basin, and wrote a flood inundation scenario based on extreme flood to exceed the planned frequency to consider only overflow and levee break and executed inundation simulation. Researchers conducted an analysis of overflow and levee break using function of HEC-RAS Storage with a One-Dimensional model. It applied Elevation versus Volume Curve for more correct inundation simulation than a method of Area-Time-Depth which used in popular. This study will suggest a mathematical method of SURFER with a little difference of inundation area more simplified and precise flood inundation than complicated Arcview 3.2a which used Query method of Arcview 3.2a.

Applicability Analysis of Head Loss Coefficients at Surcharge Manholes for Inundation Analysis in Urban Area (도시침수해석을 위한 과부하 맨홀의 손실계수 적용성 분석)

  • Kim, Chae Rin;Kim, Jung Soo;Yoon, Sei Eui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.395-406
    • /
    • 2018
  • The XP-SWMM model, widely used for inundation analysis of urban watersheds, underestimated the inundation area (range) because the manhole was regarded as a node and the influence of the local loss occurring in the surcharged manhole can not be considered. Therefore, it is necessary to analyze the applicability of the head loss coefficients considering the local loss in the surcharged manholes in inundation analysis using XP-SWMM. The Dorim 1 drainage section of the Dorim-river watershed, where frequent domestic flood damage occurred, was selected as the study watershed. The head loss coefficients of the surcharged manholes estimated from the previous experimental studies were applied to the inundation analysis, and the changes of the inundation area with and without the application of the head loss coefficients with manhole types were compared and analyzed. As a result of inundation simulation with the application of head loss coefficients, the matching rates were increased by 17% in comparison with the without application of them. In addition, the simulated inundation area applied only the head loss coefficients of straight path manholes and applied up to the head loss coefficients of combining manholes ($90^{\circ}$ bend, 3-way, and 4-way) were similar. Therefore, in order to accurately simulate the storm drain system in urban areas, it could be to carry out two-dimensional inundation analysis considering the head loss coefficients at the surcharged manholes. It was expected that the study results will be utilized as basic data for establishing the identification of the inundation risk area.

A Tsunami Simulation Model based on Cellular Automata for Analyzing Coastal Inundation: Case Study of Gwangalli Beach (지진해일로 인한 해안 침수 분석을 위한 셀 오토마타 기반의 시뮬레이션 모델 개발: 광안리 해변 사례 연구)

  • Joo, Jae Woo;Joo, Jun Mo;Kim, Dong Min;Lee, Dong Hun;Choi, Seon Han
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.710-720
    • /
    • 2020
  • Tsunami occurred by a rapid change in the ocean floor is a natural disaster that causes serious damage worldwide. South Korea seems to be out of the range of this damage, but it is quite possible that South Korea will fall within the range due to the long-distance propagation features of tsunami and many earthquakes occurred in Japan. However, the analysis and preparation for tsunami have been still insufficient. In this paper, we propose a tsunami simulation model based on cellular automata for analyzing coastal inundation. The proposed model calculates the range of inundation in coastal areas by propagating the energy of tsunami using the interaction between neighboring cells. We define interaction rules and algorithms for the energy transfer and propose a software tool to effectively utilize the model. In addition, to verify and tune the simulation model, we used the actual tsunami data in 2010 at Dichato, Chile. As a case study, the proposed model was applied to analyze the coastal inundation according to tsunami height in Gwangali Beach, a famous site in Busan. It is expected that the simulation model can be a help to prepare an effective countermeasure against tsunami and be used for a virtual evacuating training.

Computation of Criterion Rainfall for Urban Flood by Logistic Regression (로지스틱 회귀에 의한 도시 침수발생의 한계강우량 산정)

  • Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.713-723
    • /
    • 2019
  • Due to the climate change and various rainfall pattern, it is difficult to estimate a rainfall criterion which cause inundation for urban drainage districts. It is necessary to examine the result of inundation analysis by considering the detailed topography of the watershed, drainage system, and various rainfall scenarios. In this study, various rainfall scenarios were considered with the probabilistic rainfall and Huff's time distribution method in order to identify the rainfall characteristics affecting the inundation of the Hyoja drainage basin. Flood analysis was performed with SWMM and two-dimensional inundation analysis model and the parameters of SWMM were optimized with flood trace map and GA (Genetic Algorithm). By linking SWMM and two-dimensional flood analysis model, the fitness ratio between the existing flood trace and simulated inundation map turned out to be 73.6 %. The occurrence of inundation according to each rainfall scenario was identified, and the rainfall criterion could be estimated through the logistic regression method. By reflecting the results of one/two dimensional flood analysis, and AWS/ASOS data during 2010~2018, the rainfall criteria for inundation occurrence were estimated as 72.04 mm, 146.83 mm, 203.06 mm in 1, 2 and 3 hr of rainfall duration repectively. The rainfall criterion could be re-estimated through input of continuously observed rainfall data. The methodology presented in this study is expected to provide a quantitative rainfall criterion for urban drainage area, and the basic data for flood warning and evacuation plan.

Study on the influence of sewer network simplification on urban inundation modelling results (하수관망의 간소화가 도시침수 모의에 미치는 영향 분석에 관한 연구)

  • Lee, Seung-Soo;Pakdimanivong, Mary;Jung, Kwan-Sue;Kim, Yeonsu
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.347-354
    • /
    • 2018
  • In urban areas, runoff flow is drained through sewer networks as well as surface areas. Therefore, it is very important to consider sewer networks as a component of hydrological drainage processes when conducting urban inundation modelling. However, most researchers who have implemented urban inundation/flood modelling, instinctively simplified the sewer networks without the appropriate criteria. In this research, a 1D-2D fully coupled urban inundation model is applied to estimate the influence of sewer network simplification on urban inundation modelling based on the dendritic network classification. The one-dimensional (1D) sewerage system analysis model, which was introduced by Lee et al. (2017), is used to simulate inlet and overflow phenomena by interacting with surface flow. Two-dimensional (2D) unstructured meshes are also applied to simulate surface flow and are combined with the 1D sewerage analysis model. Sewer network pipes are simplified based on the dendritic network classification method, namely the second and third order, and all cases of pipes are conducted as a control group. Each classified network case, including a control group, is evaluated through their application to the 27 July 2011 extreme rainfall event, which caused severe inundation damages in the Sadang area in Seoul, South Korea. All cases are compared together regarding inundation area, inflow discharge and overflow discharge. Finally, relevant criterion for the simplification method is recommended.