• Title/Summary/Keyword: Intuitive stage

Search Result 42, Processing Time 0.02 seconds

An Analysis on the Elementary Students' Problem Solving Process in the Intuitive Stages (직관적 수준에서 초등학생들의 수학 문제해결 과정 분석)

  • Lee, Daehyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.18 no.3
    • /
    • pp.241-258
    • /
    • 2015
  • The purpose of this paper is to examine the students' mathematics problem solving process in the intuitive stages. For this, researcher developed the questionnaire which consisted of problems in relation to intuitive and algorithmic problem solving. 73 fifth grade and 66 sixth grade elementary students participated in this study. I got the conclusion as follows: Elementary students' intuitive problem solving ability is very low. The rate of algorithmic problem solving is higher than that of intuitive problem solving in number and operation areas. The rate of intuitive problem solving is higher in figure and measurement areas. Students inclined to solve the problem intuitively in that case there is no clue for algorithmic solution. So, I suggest the development of problems which can be solved in the intuitive stage and the preparation of the methods to experience the insight and intuition.

An Analysis on the Elementary Preservice Teachers' Problem Solving Process in Intuitive Stages (직관적 수준에서 초등 예비교사들의 문제해결 과정 분석)

  • Lee, Dae Hyun
    • School Mathematics
    • /
    • v.16 no.4
    • /
    • pp.691-708
    • /
    • 2014
  • In general, the intuitive knowledge that can use in mathematics problem solving is one of the important knowledge to teachers as well as students. So, this study is aimed to analyze the elementary preservice teachers' intuitive knowledge in relation to intuitive and counter-intuitive problem solving. For this, I performed survey to use questionnaire consisting of problems that can solve in intuitive methods and cause the errors by counter-intuitive methods. 161 preservice teachers participated in this study. I got the conclusion as follows. preservice teachers' intuitive problem solving ability is very low. I special, many preservice teachers preferred algorithmic problem solving to intuitive problem solving. So, it's needed to try to improve preservice teachers' problem solving ability via ensuring both the quality and quantity of problem solving education during preservice training courses. Many preservice teachers showed errors with incomplete knowledges or intuitive judges in counter-intuitive problem solving process. For improving preservice teachers' intuitive problem solving ability, we have to develop the teacher education curriculum and materials for preservice teachers to go through intuitive mathematical problem solving. Add to this, we will strive to improve preservice teachers' interest about mathematics itself and value of mathematics.

  • PDF

A Study on the Mathematical Problem Solving Teaching based on the Problem solving approach according to the Intuitive and the Formal Inquiry (직관적·형식적 탐구 기반의 문제해결식 접근법에 따른 수학 문제해결 지도 방안 탐색)

  • Lee, Daehyun
    • Journal for History of Mathematics
    • /
    • v.32 no.6
    • /
    • pp.281-299
    • /
    • 2019
  • Mathematical problem solving has become a major concern in school mathematics, and methods to enhance children's mathematical problem solving abilities have been the main topics in many mathematics education researches. In addition to previous researches about problem solving, the development of a mathematical problem solving method that enables children to establish mathematical concepts through problem solving, to discover formalized principles associated with concepts, and to apply them to real world situations needs. For this purpose, I examined the necessity of problem solving education and reviewed mathematical problem solving researches and problem solving models for giving the theoretical backgrounds. This study suggested the problem solving approach based on the intuitive and the formal inquiry which are the basis of mathematical discovery and inquiry process. And it is developed to keep the balance and complement of the conceptual understanding and the procedural understanding respectively. In addition, it consisted of problem posing to apply the mathematical principles in the application stage.

Using the Cabri3D Program for Enhancing Problem Solving Ability (문제해결력 신장을 위한 Cabri3D의 교육적 활용)

  • Kim, Nam-Hee
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.4
    • /
    • pp.345-366
    • /
    • 2006
  • In this study, we investigated the methods of using the Cabri3D program for education of problem solving in school mathematics. Cabri3D is the program that can represent 3-dimensional figures and explore these in dynamic method. By using this program, we can see mathematical relations in space or mathematical properties in 3-dimensional figures vidually. We conducted classroom activity exploring Cabri3D with 15 pre-service leachers in 2006. In this process, we collected practical examples that can assist four stages of problem solving. Through the analysis of these examples, we concluded that Cabri3D is useful instrument to enhance problem solving ability and suggested it's educational usage as follows. In the stage of understanding the problem, it can be used to serve visual understanding and intuitive belief on the meaning of the problem, mathematical relations or properties in 3-dimensional figures. In the stage of devising a plan, it can be used to extend students's 2-dimensional thinking to 3-dimensional thinking by analogy. In the stage of carrying out the plan, it can be used to help the process to lead deductive thinking. In the stage of looking back at the work, it can be used to assist the process applying present work's result or method to another problem, checking the work, new problem posing.

  • PDF

A STUDY ON LIGHTING SIMULATION SYSTEM (통합형 무대 디자인 시스템 연구 -조명 시각화 및 통제 시스템에 관하여-)

  • Lee, Dong-Hun;Jang, Tae-Soo;Shin, Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.851-854
    • /
    • 2009
  • This Research suggest that key features of lighting simulation and intuitive theaterical design method can unify single system. It can produce the virtual scene of stage which is able to predict the number of lighting box and design budget. the final goal of this research is unifying lighting and stage design into on single system.

  • PDF

Systematic Dynamic Modeling of an Integrated Single-stage Power Converter

  • Choi, Ki-Young;Lee, Kui-Jun;Kim, Yong-Wook;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2288-2296
    • /
    • 2015
  • This paper proposes a novel systematic modeling approach for an integrated single-stage power converter in order to predict its dynamic characteristics. The basic strategy of the proposed modeling is substituting the internal converters with an equivalent current source, and then deriving the dynamic equations under a standalone operation using the state-space averaging technique. The proposed approach provides an intuitive modeling solution and simplified mathematical process with accurate dynamic prediction. The simulation and experimental results by using an integrated boost-flyback converter prototype provide verification consistent with theoretical expectations.

The Morphological Transformation Characteristics of Yanji in China through Space Syntax (공간구문론을 통한 중국 연길시 도시형태 변화과정 연구)

  • Kang, Wen-zhe;Yang, Seung-Woo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.13 no.4
    • /
    • pp.115-124
    • /
    • 2011
  • This study examines the process of urban formation in the city of Yanji. The analysis is done by the change of street pattern and major facility location in a timely manner by appling space syntax method. This research categorizes the pattern of the urban growth focused on two urban forms, street and major buildings, in the city and is offered of the meaning of the first value on interpretation of the urban growth in the city of Yanji. The result of the research are as follows. First, the period of the city transformation is divided into four stage; intuitive period, grid-iron formative period, consolidation period, and urban expansion period. Second, characteristics of each stage have been analyzed. At the first stage, the city started to frame along both buildings and streets which were placed without a plan. At the second stage, the city was planned and constructed into new grid-iron pattern ignoring existing context by Jananese colony. At the consolidation period, the road system expands from the city center toward suburban. At the last expansion period, the shape of the city has complicated its shape with complex road system. This study contributes to provide a basic analysis and data to investigate how the Yanji city has evolved over period of time. But further continuous research should be done for future urban development of the Yanji city.

An Implementation of Spatio-Temporal Graph to Represent Situations in the Virtual World (가상현실 속의 상황 표현을 위한 시공간 그래프의 구현)

  • Park, Jong-Hee;Jung, Gung-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.6
    • /
    • pp.9-19
    • /
    • 2013
  • In this paper, we develop a Spatio-Temporal graph as of a key component of our knowledge representation Scheme. We design an integrated representation scheme to depict not only present and past but future in parallel with the spaces in an effective and intuitive manner. An event in general occupies not only a space but a time. Hence a crucial premise for the simulation of virtual situations is to position events in the multi-dimensional context, that is, 3-D space extended by the temporal dimension. Furthermore an event tends to have physical, social and mental aspects intertwined. As a result we need diverse information structures and functions to model entities and relations associated with events and to describe situations in different stances or perspectives of the virtual agents. These structures and functions are implemented in terms of integrated and intuitive representation schemes at different levels such as Ontology View, Instance View, ST View, Reality View. The resulting multi-dimensional comprehensive knowledge structure accommodates multi-layered virtual world developing in the time to maximize the diversity of situations in the historical context. The viability of this knowledge representation scheme is demonstrated with a typical scenario applied to a simulator implemented based on the ST Graph. The virtual stage based on the ST graph can be used to provide natural contexts for situated learning or next-generation simulation games.

A Study on Image Evaluation System based on Prototype Theory (프로토타입 이론을 적용한 계층적 이미지 계측시스템)

  • 김돈한
    • Archives of design research
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • In order to design the products that impression or emotional taste influence the purchase, feedback is necessary as useful data for better idea sketches through users emotional evaluation in early stage of design process. On the other hand, it was required to make judgments individually in previous image evaluations for emotional evaluations such as semantic differential method (SD method) that objects have been considered as classified tendency. However those SD methods are not enough to reflect flexible human capability with similarity judgment in object perceptual process. Therefore, this study proposes a classification of stimulus based on intuitive judgment and a hierarchical image evaluation method based on analysis of hierarchical process and fuzzy integration. The evaluation will be conducted through the order of process, intuitive classification of objective stimulus and items, definition of representatives in each class. Evaluation for each image of the stimulus, calculation of prior raking based on fuzzy integration. The evaluation supportive software is developed to conduct this evaluation process under interactive environments.

  • PDF

Development of Hull Thickness Management System for Ship Management System (선박 유지보수를 위한 선체 두께 관리 시스템 개발)

  • Park, Kaemyoung;Lee, Jeong-youl;Lee, Kyungho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.281-290
    • /
    • 2015
  • The specific goal of the SMS (Ship Management System) is to increate ship safety and decrease maintenance fee. Equipment of ship is managed by PMS (Planned Management System), subsystem of SMS. But hull has not managed by ship manager. So, the Classes have developed the system for hull maintenance. Recently, the ship maintenance system has been developed for satisfying operator's requirements such as managing maintenance data as integrated platform, intuitive manipulation and design for ease of use. To reflect such requirement, 3D Model based maintenance system was introduced for ship in operation stage. Hull items that have to be inspected, repaired, replaced, are stored in integrated data platform with drawing, reports, and etc. and completely linked to 3D product Model. This system is specially developed for measurement and maintenance of hull thickness.