• Title/Summary/Keyword: Intuitive Interface design

Search Result 97, Processing Time 0.025 seconds

Design of Multiple Myo-Based UAV Controller (다중 Myo 기반의 UAV 제어기 설계)

  • Kim, Hyeok;Kim, Donguk;Sung, Yunsick
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • Given that the utilization of Unmanned Aerial Vehicles (UAVs) is recently increased, a variety of UAV control methods are being applied. In general, it has been used a lot to directly control a UAV via manipulator. However, tangible user interface is required to control UAVs accurately. This paper proposes a method for controlling an UAV based on multiple Myos. The UAV is connected to a ground control station and then controlled by Myos. Intuitive control is possible by controlling the UAV using tangible user interface.

Teleloperation of Field Mobile Manipulator with Wearable Haptic-based Multi-Modal User Interface and Its Application to Explosive Ordnance Disposal

  • Ryu Dongseok;Hwang Chang-Soon;Kang Sungchul;Kim Munsang;Song Jae-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1864-1874
    • /
    • 2005
  • This paper describes a wearable multi-modal user interface design and its implementation for a teleoperated field robot system. Recently some teleoperated field robots are employed for hazard environment applications (e.g. rescue, explosive ordnance disposal, security). To complete these missions in outdoor environment, the robot system must have appropriate functions, accuracy and reliability. However, the more functions it has, the more difficulties occur in operation of the functions. To cope up with this problem, an effective user interface should be developed. Furthermore, the user interface is needed to be wearable for portability and prompt action. This research starts at the question: how to teleoperate the complicated slave robot easily. The main challenge is to make a simple and intuitive user interface with a wearable shape and size. This research provides multi-modalities such as visual, auditory and haptic sense. It enables an operator to control every functions of a field robot more intuitively. As a result, an EOD (explosive ordnance disposal) demonstration is conducted to verify the validity of the proposed wearable multi-modal user interface.

An Internet-based Hybrid Design Methodology for Collaborative Virtual Design Studio (인터넷 기반 가상 디자인 스튜디오에서 하이브리드 건축 협업 설계 방법론에 관한 연구)

  • 박재완;최진원
    • Korean Institute of Interior Design Journal
    • /
    • no.40
    • /
    • pp.158-164
    • /
    • 2003
  • The rapid development of information technology has much influence on architectural design. Collaboration beyond time and space has been possible by networking the work environment and digital products. Thus, the virtual design studio on architectural design is getting more important than ever before. This research investigates a virtual design studio methodology for effective collaboration. The building design process and the communication model are studied and possible modes of design collaboration are defined. This paper proposes an internet-based Virtual Reality(VR) communication tool as well as new design methodology that we call the 'Hybrid Design Methodology'. We expect that this design methodology will dramatically increase design feedbacks, and thus results in better design alternatives. There are two issues involved in developing the collaborative virtual design studio: 1) an intuitive interface that presents collaborative relations, and 2) three-dimensional computer-mediated communication tool using sketch as a modeling method. Further research issues identified at the end of the research include developing algorithms that translate mapping images to polygons for the drafting phase in the design process.

ADE: Agent Development Environment for Engineering (ADE : 공학 에이전트 개발 환경)

  • 구본석;이수홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.1
    • /
    • pp.55-63
    • /
    • 2003
  • ADE i,1 a software tool for the design and implementation of multi-agent systems. ADE allows a designer to draw a multi-agent system graphically, specify the necessary properties, and deploy their applications. ADE offers a set of intuitive, easy to use interfaces that enable a designer to completely specify the agents and agent interactions in a multi-agent system. In this environment, JATLite/sup [1]/ is improved significantly. Furthermore, ADE provides a unique set of features for a multi-agent system design tool. An agent description method based on Design roadmap/sup [2]/ theory, a hierarchy of agents, and a fully featured Java-based Graphical User Interface are combined in ADE. This distinct combination of features mates ADE stand out among the existing multi-agent system design tools. This paper presents the research related to the application of the ADE, along with descriptions of its design and implementation.

Tension Based 7 DOEs Force Feedback Device: SPIDAR-G

  • Kim, Seahak;Yasuharu Koike;Makoto Sato
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • In this paper, we intend to demonstrate a new intuitive force-feedback device for advanced VR applications. Force feed-back for the device is tension based and is characterized by 7 degrees of freedom (DOF); 3 DOF for translation, 3 DOF for rotation, and 1 DOF for grasp). The SPIDAR-G (Space Interface Device for Artificial Reality with Grip) will allow users to interact with virtual objects naturally by manipulating two hemispherical grips located in the center of the device frame. We will show how to connect the strings between each vertex of grip and each extremity of the frame in order to achieve force feedback. In addition, methodologies will be discussed for calculating translation, orientation and grasp using the length of 8 strings connected to the motors and encoders on the frame. The SPIDAR-G exhibits smooth force feedback, minimized inertia, no backlash, scalability and safety. Such features are attributed to strategic string arrangement and control that results in stable haptic rendering. The design and control of the SPIDAR-G will be described in detail and the Space Graphic User Interface system based on the proposed SPIDAR-G system will be demonstrated. Experimental results validate the feasibility of the proposed device and reveal its application to virtual reality.

Design of Multimensional Contents Retrieval Browser for IPTV (IPTV를 위한 다차원 콘텐츠 검색 브라우저의 설계)

  • Choi, Yoo-Joo;Oh, Jung-Min;Byeon, Jae-Hee;Moon, Nam-Mee
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.138-146
    • /
    • 2010
  • Interest in IPTV content increases, the number of users quickly and easily find the need for an interface that can be consumed as well as the individual's taste is reflected in the menu structure is an emerging demand. Existing IPTV content depending on the browser menu, use the intuitive search criteria are presented differently, this is difficult and not take into account the characteristics of the user by providing an interface for users to interact with the content was limited. In this paper propose According to user requirements in IPTV, regardless of the type of content applicable to the multidimensional contents retrieval browser. This applies equally to the menu category and multidimensional approach based on simple, intuitive and can be used to visualize the content by users without detailed information about the multi-dimensional search to only the desired content will be available for consumption.

A Study on the Color Usability of Lumino Haptic Device (루미노 햅틱 디바이스의 색상 사용성 연구)

  • Lee, Sang-Jin;Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • Haptic device is regarded as the human machine interface technology for easier, more accurate, and intuitive operation. The purpose of this study is to define driver's affection on the haptic device in terms of its design factor : the color of haptic lighting as independent factor. This paper is studied to improve the cognitive ability of existing vehicle haptic device used by only a tactile feedback. On the color feedback usability evaluation, the lmino haptic device is used by adding color feedback to the existing vehicle haptic device. The emotional factor that driver has on the haptic device is extracted by the sensibility analysis. As a result, it is possible to suggest the design direction that satisfies the driver.

Comparative Study on the Interface and Interaction for Manipulating 3D Virtual Objects in a Virtual Reality Environment (가상현실 환경에서 3D 가상객체 조작을 위한 인터페이스와 인터랙션 비교 연구)

  • Park, Kyeong-Beom;Lee, Jae Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.1
    • /
    • pp.20-30
    • /
    • 2016
  • Recently immersive virtual reality (VR) becomes popular due to the advanced development of I/O interfaces and related SWs for effectively constructing VR environments. In particular, natural and intuitive manipulation of 3D virtual objects is still considered as one of the most important user interaction issues. This paper presents a comparative study on the manipulation and interaction of 3D virtual objects using different interfaces and interactions in three VR environments. The comparative study includes both quantitative and qualitative aspects. Three different experimental setups are 1) typical desktop-based VR using mouse and keyboard, 2) hand gesture-supported desktop VR using a Leap Motion sensor, and 3) immersive VR by wearing an HMD with hand gesture interaction using a Leap Motion sensor. In the desktop VR with hand gestures, the Leap Motion sensor is put on the desk. On the other hand, in the immersive VR, the sensor is mounted on the HMD so that the user can manipulate virtual objects in the front of the HMD. For the quantitative analysis, a task completion time and success rate were measured. Experimental tasks require complex 3D transformation such as simultaneous 3D translation and 3D rotation. For the qualitative analysis, various factors relating to user experience such as ease of use, natural interaction, and stressfulness were evaluated. The qualitative and quantitative analyses show that the immersive VR with the natural hand gesture provides more intuitive and natural interactions, supports fast and effective performance on task completion, but causes stressful condition.

Implementation of Mobile Web Interface Design for Smart-Phone Users (스마트폰 사용자를 위한 모바일 웹 인터페이스 디자인 구현)

  • Oh, Hyoung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.639-648
    • /
    • 2011
  • Since the emergence of the smartphone and tablet PC whose wireless internet accessibility has improved, personal computing environment has shifted from PCs to mobile web based mobile devices, and therefore the use of information and the communication method have been changing rapidly. Under the circumstance, domestic universities have actively been establishing mobile websites for smartphone users. Such mobile websites, however, focused on diverse functions and a showy design rather than on usability or accessibility, and were developed simply for the purpose of public relations. For this reason, students are now faced with difficulties in using the websites. Therefore, this paper proposes a novel web interface with the consideration of usability and accessibility in order for users to easily use and assess proper information. The matters to be taken into account in developing a mobile website are an intuitive interface design, user experiences, a user customized interface and compliance with web standards.

Development of 3-D viewer for indoor location tracking system using wireless sensor network

  • Yang, Chi-Shian;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.110-114
    • /
    • 2007
  • In this paper we present 3-D Navigation View, a three-dimensional visualization of indoor environment which serves as an intuitive and unified user interface for our developed indoor location tracking system via Virtual Reality Modeling Language (VRML) in web environment. The extracted user's spatial information from indoor location tracking system was further processed to facilitate the location indication in virtual 3-D indoor environment based on his location in physical world. External Authoring Interface (EAI) provided by VRML enables the integration of interactive 3-D graphics into web and direct communication with the encapsulated Java applet to update position and viewpoint of user periodically in 3-D indoor environment. As any web browser with VRML viewer plug-in is able to run the platform independent 3-D Navigation View, specialized and expensive hardware or software can be disregarded.