• Title/Summary/Keyword: Intuitive Controller

Search Result 34, Processing Time 0.029 seconds

Motor drive control development: a new approach to learning and design

  • Porobic, Vlado;Ivanovic, Zoran;Adzic, Evgenije;Vekic, Marko;Celanovic, Nikola;Oh, Hyounglok
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.37-38
    • /
    • 2013
  • This paper presents an intuitive and powerful way to study and design motor drive control. The control of induction motors, as most widely used machines, is discussed. Thanks to ultra low latency and high fidelity Hardware-in-the-Loop systems, different aspects of up-to-date drive regulation are examined. A power stage, comprised of a grid voltage source, a rectifier, a VSC inverter and an induction motor, is emulated on the HIL platform in real time. A digital signal controller is plugged into the interface board and connected to the HIL emulation platform, without any hardware modifications. For motor control and power electronics applications, a dedicated Texas Instruments TMS320F2808 DSP is chosen. The same controller can drive an emulation platform and a real device with no modifications. Current and speed control loop test results are presented and discussed.

  • PDF

Rotor Resistance Estimation Of Induction Motor With Model uncertainty Using NonLinear Disturbance Observer (비선형 외란 관측기를 이용한 모델 불확실성을 고려한 유도전동기의 회전자 저항 추종)

  • Arsalan, Arif;Park, Ki-Kwang;Lee, Sun-Young;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1656_1657
    • /
    • 2009
  • This paper presents a new method for estimating rotor resistance of induction motor. The rotor resistance changes dramatically with temperature and frequency. Speed is controlled by PID as it is simplest and most intuitive control method. The change in rotor resistance has a great influence on the performance of IM. In this paper rotor resistance is estimated using Non Linear Disturbance Observer. The model uncertainty and system non linearity are treated as disturbance in this method. Using NDO it does not require an accurate dynamic model to achieve high precision motor control. Controller with NDO has more superior tracking performance. Simulation results are presented to show the validity of the proposed controller.

  • PDF

Design of Gaming Interaction Control using Gesture Recognition and VR Control in FPS Game (FPS 게임에서 제스처 인식과 VR 컨트롤러를 이용한 게임 상호 작용 제어 설계)

  • Lee, Yong-Hwan;Ahn, Hyochang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.116-119
    • /
    • 2019
  • User interface/experience and realistic game manipulation play an important role in virtual reality first-person-shooting game. This paper presents an intuitive hands-free interface of gaming interaction scheme for FPS based on user's gesture recognition and VR controller. We focus on conventional interface of VR FPS interaction, and design the player interaction wearing head mounted display with two motion controllers; leap motion to handle low-level physics interaction and VIVE tracker to control movement of the player joints in the VR world. The FPS prototype system shows that the design interface helps to enjoy playing immersive FPS and gives players a new gaming experience.

Design of a Fuzzy Logic Controller Using Response Surface Methodology (반응표면분석법을 이용한 퍼지제어기 설계)

  • 이세헌
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.591-597
    • /
    • 1999
  • When fuzzy logic controllers which are designed based on plant models and intuitive base are applied to real plants, the control systems may not give satisfactory control results due to the modeling error and the lack of knowledge on the plants. In that case. the controller must be retuned by adjusting the control parameters; this retuning process may require a large number of trial-and-error evaluations and thus much time and cost. In order to resolve these problems, we propose a systematic and efficient procedure for designing a fuzzy logic controller using response surface methodology. First wc select the initial optimal conditions of control parameters using a genetic algorithm, in which a nominal plant model with intrinsic modeling errors is used. And then we determine the tinal optimal conditions of the control parameters using response surface methodology. Computer simulations are performed to verify the capability of the proposed method.

  • PDF

Exponential Stabilization of a Class of Underactuated Mechanical Systems using Dynamic Surface Control

  • Qaiser, Nadeem;Iqbal, Naeem;Hussain, Amir;Qaiser, Naeem
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.547-558
    • /
    • 2007
  • This paper proposes a simpler solution to the stabilization problem of a special class of nonlinear underactuated mechanical systems which includes widely studied benchmark systems like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact feedback linearizibility of these systems makes design of control law a challenging task. Stabilization of these systems has been achieved using Energy Shaping and damping injection and Backstepping technique. Former results in hybrid or switching architectures that make stability analysis complicated whereas use of backstepping some times requires closed form explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It also exhibits the phenomenon of explosions of terms resulting in a highly complicated control law. Exploiting recently introduced Dynamic Surface Control technique and using control Lyapunov function method, a novel nonlinear controller design is presented as a solution to these problems. The stability of the closed loop system is analyzed by exploiting its two-time scale nature and applying concepts from Singular Perturbation Theory. The design procedure is shown to be simpler and more intuitive than existing designs. Design has been applied to important benchmark systems belonging to the class demonstrating controller design simplicity. Advantages over conventional Energy Shaping and Backstepping controllers are analyzed theoretically and performance is verified using numerical simulations.

Design and Development of Terrain-adaptive and User-friendly Remote Controller for Wheel-Track Hybrid Mobile Robot Platform (휠-트랙 하이브리드 모바일 로봇 플랫폼의 지형 적응성 및 사용자 친화성 향상을 위한 원격 조종기 설계와 개발)

  • Kim, Yoon-Gu;An, Jin-Ung;Kwak, Jeong-Hwan;Moon, Jeon-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.558-565
    • /
    • 2011
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for surveillance, reconnaissance, search and rescue, etc. We considered a terrain-adaptive and transformable hybrid robot platform that is equipped with rapid navigation capability on flat floors and good performance in overcoming stairs or obstacles. The navigation mode transition is determined and implemented by adaptive driving mode control of the mobile robot. In order to maximize the usability of wheel-track hybrid robot platform, we propose a terrain-adaptive and user-friendly remote controller and verify the efficiency and performance through its navigation performance experiments in real and test-bed environments.

UbiController: Universal Mobile System for Controlling Appliances in Smart Home Environment (UbiController: 스마트 홈 환경의 가전기기 제어를 위한 통합 모바일 시스템)

  • Yoon, Hyo-Seok;Kim, Hye-Jin;Woo, Woon-Tack;Lee, Sang-Goog
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.8
    • /
    • pp.1059-1071
    • /
    • 2008
  • Users in ubiquitous computing environment can easily access and use a multitude of devices and services anywhere and anytime. The key technology to realize this scenario is the method to intuitively provide proper user interfaces for each device and service. Previous attempts simply provided a designated user interface for each device and service or provided an abstract user interface to control common functions of different services. To select a target appliance, either user directly specified the target device or depended on sensors such as RFID tags and readers limiting the applicable scenarios. In this paper, we present UbiController which uniquely uses camera on the mobile device to recognize markers of appliances to acquire user interface for controlling task. UbiController aims to provide automatic discovery of multiple services in the smart home environment, support traditional GUI and novel camera-based recognition method as well as intuitive interaction methods for users. In this paper, we show experiments on the performance of UbiController's discovery and recognition methods and user feedback on interaction methods from a user study.

  • PDF

Control of Humanoid Robots Using Time-Delay-Estimation and Fuzzy Logic Systems

  • Ahn, Doo Sung
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2020
  • For the requirement of accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Because of the complexity of humanoid robot dynamics, the TDC (time-delay control) is practical because it does not require a dynamic model. However, there occurs a considerable error due to discontinuous non-linearities. To solve this problem, the TDC-FLC (fuzzy logic compensator) is applied to humanoid robots. The applied controller contains three factors: a TDE (time-delay estimation) factor, a desired error dynamic factor, and FLC to suppress the TDE error. The TDC-FLC is easy to execute because it does not require complicated humanoid dynamic calculations and the heuristic fuzzy control rules are intuitive. TDC-FLC is implemented on the whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the TDC-FLC for humanoid robots.

Design of Multiple Myo-Based UAV Controller (다중 Myo 기반의 UAV 제어기 설계)

  • Kim, Hyeok;Kim, Donguk;Sung, Yunsick
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • Given that the utilization of Unmanned Aerial Vehicles (UAVs) is recently increased, a variety of UAV control methods are being applied. In general, it has been used a lot to directly control a UAV via manipulator. However, tangible user interface is required to control UAVs accurately. This paper proposes a method for controlling an UAV based on multiple Myos. The UAV is connected to a ground control station and then controlled by Myos. Intuitive control is possible by controlling the UAV using tangible user interface.

Analyzer to Identify Phrases and the Functional Roles in Sentences: Its Architectural Aspects

  • Alam, Yukiko Sasaki
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.67-75
    • /
    • 2007
  • This paper presents the architectural aspects of the phrase analyzer that attempts to recognize phrases and identify the functional roles in the sentences in formal Japanese documents. Since the object of interest is a phrase, the current system, designed in an object-oriented architecture, contains the Phrase class, and makes use of the linguistic generalization about languages with Case markers that a phrase, whether a noun phrase, a verb phrase, a postposition (or preposition) phrase or a clause phrase, can be separated into the content and the function components. Without a dictionary, and drawing on the orthographic information on the words to parse, it also contains a class that identifies the types of characters, a class representing grammar, and a class playing the role of a controller. The system has a simple and intuitive structure, externally and internally, and therefore is easy to modify and extend.

  • PDF