• Title/Summary/Keyword: Intrusion beam

Search Result 24, Processing Time 0.023 seconds

Evaluation of changes in the maxillary alveolar bone after incisor intrusion

  • Atik, Ezgi;Gorucu-Coskuner, Hande;Akarsu-Guven, Bengisu;Taner, Tulin
    • The korean journal of orthodontics
    • /
    • v.48 no.6
    • /
    • pp.367-376
    • /
    • 2018
  • Objective: This study was performed to investigate the changes in alveolar bone after maxillary incisor intrusion and to determine the related factors in deep-bite patients. Methods: Fifty maxillary central incisors of 25 patients were evaluated retrospectively. The maxillary incisors in Group I (12 patients; mean age, $16.51{\pm}1.32years$) were intruded with a base-arch, while those in Group II (13 patients; mean age, $17.47{\pm}2.71years$) were intruded with miniscrews. Changes in the alveolar envelope were assessed using pre-intrusion and post-intrusion cone-beam computed tomography images. Labial, palatal, and total bone thicknesses were evaluated at the crestal (3 mm), midroot (6 mm), and apical (9 mm) levels. Buccal and palatal alveolar crestal height, buccal bone height, and the prevalence of dehiscence were evaluated. Two-way repeated measure ANOVA was used to determine the significance of the changes. Pearson's correlation coefficient analysis was performed to assess the relationship between dental and alveolar bone measurement changes. Results: Upper incisor inclination and intrusion changes were significantly greater in Group II than in Group I. With treatment, the alveolar bone thickness at the labial bone thickness (LBT, 3 and 6 mm) decreased significantly in Group II (p < 0.001) as compared to Group I. The LBT change at 3 mm was strongly and positively correlated with the amount of upper incisor intrusion (r = 0.539; p = 0.005). Conclusions: Change in the labial inclination and the amount of intrusion should be considered during upper incisor intrusion, as these factors increase the risk of alveolar bone loss.

Cone-beam computed tomographic evaluation of mandibular incisor alveolar bone changes for the intrusion arch technique: A retrospective cohort research

  • Lin Lu;Jiaping Si;Zhikang Wang;Xiaoyan Chen
    • The korean journal of orthodontics
    • /
    • v.54 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • Objective: Alveolar bone loss is a common adverse effect of intrusion treatment. Mandibular incisors are prone to dehiscence and fenestrations as they suffer from thinner alveolar bone thickness. Methods: Thirty skeletal class II patients treated with mandibular intrusion arch therapy were included in this study. Lateral cephalograms and cone-beam computed tomography images were taken before treatment (T1) and immediately after intrusion arch removal (T2) to evaluate the tooth displacement and the alveolar bone changes. Pearson's and Spearman's correlation was used to identify risk factors of alveolar bone loss during the intrusion treatment. Results: Deep overbite was successfully corrected (P < 0.05), accompanied by mandibular incisor proclination (P < 0.05). There were no statistically significant change in the true incisor intrusion (P > 0.05). The labial and lingual vertical alveolar bone levels showed a significant decrease (P < 0.05). The alveolar bone is thinning in the labial crestal area and lingual apical area (P < 0.05); accompanied by thickening in the labial apical area (P < 0.05). Proclined incisors, non-extraction treatment, and increased A point-nasion-B point (ANB) degree were positively correlated with alveolar bone loss. Conclusions: While the mandibular intrusion arch effectively corrected the deep overbite, it did cause some unwanted incisor labial tipping/flaring. During the intrusion treatment, the alveolar bone underwent corresponding changes, which was thinning in the labial crestal area and thickening in the labial apical area vice versa. And increased axis change of incisors, non-extraction treatment, and increased ANB were identified as risk factors for alveolar bone loss in patients with mandibular intrusion therapy.

A Study on the mechanical Characteristics of Kevlar Plain Weft Knitted Fabrics Reinforced Composites for Development of Intrusion Beam of Car Side Door Application (자동차 사이드 도어용 인트루젼 비임 개발을 위한 케블라섬유강화 복합재료의 기계적 특성에 관한 연구)

  • 이동기
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.89-98
    • /
    • 2000
  • Using conventional textile techniques such as weaving braiding knitting and stitching it is possible to produce a wide range two and three dimensional fiber preforms, however so far only a limited attention has been given to knitted fabrics in composite industry. This is mainly due to the opinion that knitted fabric reinforced composites posses low mechanical properties owing to their looped fiber architecture. But it is possible to obtain desired mechanical properties by selecting proper knitted fabric structure, In this paper mechanical characteristics of kevlar plain weft knitted fabrics reinforced plastics(KFRP) are evaluated for th development of intrusion beam of car side door. Tensile bending impact properties of KFRP are measured experimentally and crush demands of Americal Federal Motor Vehicle Safety Standard No.214(FMVSS 214) compared with the bending load and displacement of KFRP by quasi-static test method. The applicability and limitation of bending load and displacement of KFRP according to specimen size has been discussed.

  • PDF

The Section Design of Press Door Impact Beam for Improving Bending Strength (굽힘 강도 향상을 위한 프레스 도어 임팩트 빔의 단면 설계)

  • Jo, Kyeongrae;Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.74-81
    • /
    • 2017
  • The door impact beam of the side-impacted vehicle plays a key role in securing occupant safety by preventing intrusion from the impacting vehicle. Despite the low production cost, the press door impact beam has been adopted sparingly because of the strength inferiority. In this study, the design technologies of the press beam aimed at improving bending strength were investigated. First, the effect of the section shape and size was examined. Next, thickness and material strength were increased. Also, the TRB beam application was simulated by varying combined thickness. Some TRB beams with reduced weight exhibited bending strength over the strength of the pipe beam. Then, the beam with a closed center section also showed remarkably enhanced maximum bending strength.

Strength of Pipe Type Door Impact Beam with Changed Bracket Mounting Method and TRP Application (브라켓 마운팅 방법 변경과 TRP 적용에 따른 강관형 도어 임팩트 빔 강도)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.379-385
    • /
    • 2016
  • Door impact beam plays a key role in minimizing the occupant injury within the side impacted vehicle through preventing intrusion of the impacting vehicle. Steel pipe type door impact beam has been widely adopted since it has simple structure and the overall strength is easily determined according to the pipe size. The brackets welded at pipe ends connect the door impact beam and the door panels by spot welds. In this study, first, the effect of pipe thickness, bracket thickness and door mounting stiffness was respectively analyzed. Next, application of the tailor rolled pipe was examined and several alterations of the bracket mounting method were considered. Application of tailor rolled pipes with superior bracket mounting method showed remarkable strength enhancement and weight reduction possibility in comparison with the current door impact beam.

Optimization of the Automotive Side Door Impact Beam Considering Static Requirement (정적충돌성능을 고려한 자동차 옆문 충격빔의 최적설계)

  • 송세일;차익래;이권희;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.176-184
    • /
    • 2002
  • The door stiffness is one of the important factors for the side impact. Generally, the researches have been conducted on the assembled door. A side impact door beam is installed in a door to protect occupants from the side impact. This research is only concentrated on the side impact beam and a side impact beam is designed. The cross section is defined to have an elliptic shape. An optimization problem is defined to find the design maximizing the intrusion stiffness within the specified weight. Design variables are the radii and the thickness of the ellipsoid. The analysis of the side impact is carried out by the nonlinear finite element method. The optimization problem is solved by two methods. One is the experimental design scheme using an orthogonal array. The other is the gradient-based optimization using the response surface method(RSM). Both methods have obtained the better designs than the current one.

Investigation of Development of Bumper Back-Beam Using a Thermoplastic Polyolefin (열가소성 폴리올레핀으로 구성된 범퍼 후방 보 개발에 관한 연구)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Park, Gun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.896-905
    • /
    • 2012
  • Recently, the application of the plastic material to automotive components and structures has steadily increased to satisfy demands on the saving of overall weight and the improvement of energy efficiency. The objective of this paper is to investigate the development of a bumper back-beam using a thermoplastic olefin (TPO). The bumper back-beam was designed to be manufactured from the injection molding process. In order to obtain a proper design of the bumper back-beam, three-dimensional finite element analyses were performed for various design alternatives. Stress-strain curves for different strain rates were measured by high speed tensile tests of the TPO to consider strain rate effects in the FEA. The influence of the sectional shape and the rib formation on the contact force-intrusion curves, the deflection and the energy absorption rate of the bumper back-beam was examined. From the results of the examination, a proper design of the bumper back-beam was acquired. The bumper back-beam consisting of TPO was fabricated from the injection moulding process and the vibration welding. Pendulum crash tests were carried out using the fabricated bumper back-beam. The results of the tests showed that the designed bumper back-beam can satisfy requirements of the federal motor vehicle safety standard (FMVSS). Through the comparison of the previously designed bumper back-beam with the newly designed bumper back beam, it was noted that the weight of the designed bumper back-beam is lighter than that of the previously designed bumper back beam by nearly 16 %. In addition, it was considered that the newly designed bumper back beam can improve recycling of the bumper back-beam.

Cone-beam computed tomography-based diagnosis and treatment simulation for a patient with a protrusive profile and a gummy smile

  • Uesugi, Shunsuke;Imamura, Toshihiro;Kokai, Satoshi;Ono, Takashi
    • The korean journal of orthodontics
    • /
    • v.48 no.3
    • /
    • pp.189-199
    • /
    • 2018
  • For patients with bimaxillary protrusion, significant retraction and intrusion of the anterior teeth are sometimes essential to improve the facial profile. However, severe root resorption of the maxillary incisors occasionally occurs after treatment because of various factors. For instance, it has been reported that approximation or invasion of the incisive canal by the anterior tooth roots during retraction may cause apical root damage. Thus, determination of the position of the maxillary incisors is key for orthodontic diagnosis and treatment planning in such cases. Cone-beam computed tomography (CBCT) may be useful for simulating the post-treatment position of the maxillary incisors and surrounding structures in order to ensure safe teeth movement. Here, we present a case of Class II malocclusion with bimaxillary protrusion, wherein apical root damage due to treatment was minimized by pretreatment evaluation of the anatomical structures and simulation of the maxillary central incisor movement using CBCT. Considerable retraction and intrusion of the maxillary incisors, which resulted in a significant improvement in the facial profile and smile, were achieved without severe root resorption. Our findings suggest that CBCT-based diagnosis and treatment simulation may facilitate safe and dynamic orthodontic tooth movement, particularly in patients requiring maximum anterior tooth retraction.

MECHANICAL ANALYSIS ON THE SHAPE-MEMORY ARCH WIRE (형상기억합금 호선의 역학적 해석)

  • Lee, Jin-Hyung;Nahm, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.24 no.3 s.46
    • /
    • pp.735-758
    • /
    • 1994
  • This study was designed to investigate the displacements and reaction forces of teeth caused by the application of the rectangular shape-memory arch wires with curve of Spee. Computer-aided three dimensional finite element method was adopted. This finite element model consists of brick element for teeth, beam element for the wire, and contact element for the periodontal ligament. And the application of the MEAW(Multiloop Edgewise Arch Wire) was also studied so that the results of the two methods can be compared each other. Total number of the nodes and elements were found to be 5925 and 4031, repectively. In addition, several types of elastics and corresponding displacements and reaction forces were examined. The findings of this study were as follows: 1. When the rectangular shape-memory arch wire with curve of Sun was used alone, the intrusion and labioversion was noticeable on the upper incisors, while the upper molars showed less intrusion. With MEAW, the intrusion and labioversion of the upper incisors were slightly larger than those when the shape-memory arch wire was used, but on the upper molars the opposite result was obtained with respect to the intrusion. 2. The shape-memory arch wire with the vertical elastics caused the larger downward displacement on the upper canine than that when the MEAW was used with the vertical elastics. However, the downward displacement of the upper incisors was larger in MEAW. The uprighting and buccoversion of the molars were observed in both cases. 3. The use of the Class II or III elastics showed the extrusion and changes in torque of the corresponding teeth. The downward displacement of the upper canine was increased when the Class II and vertical elastics were applied simultaneously, but it was decreased when both of the Class III and vertical elastics were used.

  • PDF

Histological analysis on tissues around orthodontically intruded maxillary molars using temporary anchorage devices: A case report

  • Hui-Chen Tsai;Julia Yu-Fong Chang;Chia-Chun Tu;Chung-Chen Jane Yao
    • The korean journal of orthodontics
    • /
    • v.53 no.2
    • /
    • pp.125-136
    • /
    • 2023
  • Before progress was recently made in the application of temporary anchorage devices (TADs) in bio-mechanical design, orthodontists were rarely able to intrude molars to reduce upper posterior dental height (UPDH). However, TADs are now widely used to intrude molars to flatten the occlusal plane or induce counterclockwise rotation of the mandible. Previous studies involving clinical or animal histological evaluation on changes in periodontal conditions after molar intrusion have been reported, however, studies involving human histology are scarce. This case was a Class I malocclusion with a high mandibular plane angle. Upper molar intrusion with TADs was performed to reduce UPDH, which led to counterclockwise rotation of the mandible. After 5 months of upper molar intrusion, shortened clinical crowns were noticed, which caused difficulties in oral hygiene and hindered orthodontic tooth movement. The mid-treatment cone-beam computed tomography revealed redundant bone physically interfering with buccal attachment and osseous resective surgeries were followed. During the surgeries, bilateral mini screws were removed and bulging alveolar bone and gingiva were harvested for biopsy. Histological examination revealed bacterial colonies at the bottom of the sulcus. Infiltration of chronic inflammatory cells underneath the non-keratinized sulcular epithelium was noted, with abundant capillaries being filled with red blood cells. Proximal alveolar bone facing the bottom of the gingival sulcus exhibited active bone remodeling and woven bone formation with plump osteocytes in the lacunae. On the other hand, buccal alveolar bone exhibited lamination, indicating slow bone turnover in the lateral region.