• Title/Summary/Keyword: Intrusion Pattern Classification

Search Result 14, Processing Time 0.018 seconds

A Fuzzy-based Network Intrusion Detection System Through sessionization (세션화 방식을 통한 퍼지기반 네트워크 침입탐지시스템)

  • Park, Ju-Gi;Choi, Eun-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.1 s.45
    • /
    • pp.127-135
    • /
    • 2007
  • As the Internet is used widely, criminal offense that use computer is increasing, and an information security technology to remove this crime is becoming competitive power of the country. In this paper, we suggest network-based intrusion detection system that use fuzzy expert system. This system can decide quick intrusion decision from attack pattern applying fuzzy rule through the packet classification method that is done similarity of protocol and fixed time interval. Proposed system uses fuzzy logic to detect attack from network traffic, and gets analysis result that is automated through fuzzy reasoning. In present network environment that must handle mass traffic, this system can reduce time and expense of security

  • PDF

Feature Selection for Anomaly Detection Based on Genetic Algorithm (유전 알고리즘 기반의 비정상 행위 탐지를 위한 특징선택)

  • Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.1-7
    • /
    • 2018
  • Feature selection, one of data preprocessing techniques, is one of major research areas in many applications dealing with large dataset. It has been used in pattern recognition, machine learning and data mining, and is now widely applied in a variety of fields such as text classification, image retrieval, intrusion detection and genome analysis. The proposed method is based on a genetic algorithm which is one of meta-heuristic algorithms. There are two methods of finding feature subsets: a filter method and a wrapper method. In this study, we use a wrapper method, which evaluates feature subsets using a real classifier, to find an optimal feature subset. The training dataset used in the experiment has a severe class imbalance and it is difficult to improve classification performance for rare classes. After preprocessing the training dataset with SMOTE, we select features and evaluate them with various machine learning algorithms.

Design of Memory-Efficient Deterministic Finite Automata by Merging States With The Same Input Character (동일한 입력 문자를 가지는 상태의 병합을 통한 메모리 효율적인 결정적 유한 오토마타 구현)

  • Choi, Yoon-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.3
    • /
    • pp.395-404
    • /
    • 2013
  • A pattern matching algorithm plays an important role in traffic identification and classification based on predefined patterns for intrusion detection and prevention. As attacks become prevalent and complex, current patterns are written using regular expressions, called regexes, which are expressed into the deterministic finite automata(DFA) due to the guaranteed worst-case performance in pattern matching process. Currently, because of the increased complexity of regex patterns and their large number, memory-efficient DFA from states reduction have become the mainstay of pattern matching process. However, most of the previous works have focused on reducing only the number of states on a single automaton, and thus there still exists a state blowup problem under the large number of patterns. To solve the above problem, we propose a new state compression algorithm that merges states on multiple automata. We show that by merging states with the same input character on multiple automata, the proposed algorithm can lead to a significant reduction of the number of states in the original DFA by as much as 40.0% on average.

Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution (불균형 데이터 환경에서 변수가중치를 적용한 사례기반추론 기반의 고객반응 예측)

  • Kim, Eunmi;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.29-45
    • /
    • 2015
  • Response modeling is a well-known research issue for those who have tried to get more superior performance in the capability of predicting the customers' response for the marketing promotion. The response model for customers would reduce the marketing cost by identifying prospective customers from very large customer database and predicting the purchasing intention of the selected customers while the promotion which is derived from an undifferentiated marketing strategy results in unnecessary cost. In addition, the big data environment has accelerated developing the response model with data mining techniques such as CBR, neural networks and support vector machines. And CBR is one of the most major tools in business because it is known as simple and robust to apply to the response model. However, CBR is an attractive data mining technique for data mining applications in business even though it hasn't shown high performance compared to other machine learning techniques. Thus many studies have tried to improve CBR and utilized in business data mining with the enhanced algorithms or the support of other techniques such as genetic algorithm, decision tree and AHP (Analytic Process Hierarchy). Ahn and Kim(2008) utilized logit, neural networks, CBR to predict that which customers would purchase the items promoted by marketing department and tried to optimized the number of k for k-nearest neighbor with genetic algorithm for the purpose of improving the performance of the integrated model. Hong and Park(2009) noted that the integrated approach with CBR for logit, neural networks, and Support Vector Machine (SVM) showed more improved prediction ability for response of customers to marketing promotion than each data mining models such as logit, neural networks, and SVM. This paper presented an approach to predict customers' response of marketing promotion with Case Based Reasoning. The proposed model was developed by applying different weights to each feature. We deployed logit model with a database including the promotion and the purchasing data of bath soap. After that, the coefficients were used to give different weights of CBR. We analyzed the performance of proposed weighted CBR based model compared to neural networks and pure CBR based model empirically and found that the proposed weighted CBR based model showed more superior performance than pure CBR model. Imbalanced data is a common problem to build data mining model to classify a class with real data such as bankruptcy prediction, intrusion detection, fraud detection, churn management, and response modeling. Imbalanced data means that the number of instance in one class is remarkably small or large compared to the number of instance in other classes. The classification model such as response modeling has a lot of trouble to recognize the pattern from data through learning because the model tends to ignore a small number of classes while classifying a large number of classes correctly. To resolve the problem caused from imbalanced data distribution, sampling method is one of the most representative approach. The sampling method could be categorized to under sampling and over sampling. However, CBR is not sensitive to data distribution because it doesn't learn from data unlike machine learning algorithm. In this study, we investigated the robustness of our proposed model while changing the ratio of response customers and nonresponse customers to the promotion program because the response customers for the suggested promotion is always a small part of nonresponse customers in the real world. We simulated the proposed model 100 times to validate the robustness with different ratio of response customers to response customers under the imbalanced data distribution. Finally, we found that our proposed CBR based model showed superior performance than compared models under the imbalanced data sets. Our study is expected to improve the performance of response model for the promotion program with CBR under imbalanced data distribution in the real world.