• Title/Summary/Keyword: Intrinsic Bayes Factors

Search Result 36, Processing Time 0.021 seconds

Bayesian Hypothesis Testing for Two Lognormal Variances with the Bayes Factors

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1119-1128
    • /
    • 2005
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor and the fractional Bayes factor have been used to overcome this problem. In this paper, we suggest a Bayesian hypothesis testing based on the intrinsic Bayes factor and the fractional Bayes factor for the comparison of two lognormal variances. Using the proposed two Bayes factors, we demonstrate our results with some examples.

  • PDF

Intrinsic Priors for Testing Two Lognormal Means with the Fractional Bayes Factor

  • Moon, Gyoung-Ae
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.39-47
    • /
    • 2003
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So, it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor by Berger and Pericchi (1996) and the fractional Bayes factor by O'Hagan (1995) have been used to overcome this problems. This paper suggests intrinsic priors for testing the equality of two lognormal means, whose Bayes factors are asymptotically equivalent to the corresponding fractional Bayes factors. Using proposed intrinsic priors, we demonstrate our results with a simulated dataset.

  • PDF

Intrinsic Priors for Testing Two Lognormal Populations with the Fractional Bayes Factor

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.661-671
    • /
    • 2003
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So, it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor by Berger and Pericchi (1996) and the fractional Bayes factor by O'Hagan (1995) have been used to overcome this problems. This paper suggests intrinsic priors for testing the equality of two lognormal means, whose Bayes factors are asymptotically equivalent to the corresponding fractional Bayes factors. Using proposed intrinsic priors, we demonstrate our results with real example and a simulated dataset.

  • PDF

Intrinsic Priors for Testing Two Normal Means with the Default Bayes Factors

  • Jongsig Bae;Kim, Hyunsoo;Kim, Seong W.
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.443-454
    • /
    • 2000
  • In Bayesian model selection or testing problems of different dimensions, the conventional Bayes factors with improper noninformative priors are not well defined. The intrinsic Bayes factor and the fractional Bayes factor are used to overcome such problems by using a data-splitting idea and fraction, respectively. This article addresses a Bayesian testing for the comparison of two normal means with unknown variance. We derive proper intrinsic priors, whose Bayes factors are asymptotically equivalent to the corresponding fractional Bayes factor. We demonstrate our results with two examples.

  • PDF

Intrinsic Bayes Factors for Exponential Model Comparison with Censored Data

  • Kim, Dal-Ho;Kang, Sang-Gil;Kim, Seong W.
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.123-135
    • /
    • 2000
  • This paper addresses the Bayesian hypotheses testing for the comparison of exponential population under type II censoring. In Bayesian testing problem, conventional Bayes factors can not typically accommodate the use of noninformative priors which are improper and are defined only up to arbitrary constants. To overcome such problem, we use the recently proposed hypotheses testing criterion called the intrinsic Bayes factor. We derive the arithmetic, expected and median intrinsic Bayes factors for our problem. The Monte Carlo simulation is used for calculating intrinsic Bayes factors which are compared with P-values of the classical test.

  • PDF

Default Bayes Factors for Testing the Equality of Poisson Population Means

  • Son, Young Sook;Kim, Seong W.
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.549-562
    • /
    • 2000
  • Default Bayes factors are computed to test the equality of one Poisson population mean and the equality of two independent Possion population means. As default priors are assumed Jeffreys priors, noninformative improper priors, and default Bayes factors such as three intrinsic Bayes factors of Berger and Pericchi(1996, 1998), the arithmetic, the median, and the geometric intrinsic Bayes factor, and the factional Bayes factor of O'Hagan(1995) are computed. The testing results by each default Bayes factor are compared with those by the classical method in the simulation study.

  • PDF

Instrinsic Priors for Testing Two Exponential Means with the Fractional Bayes Factor

  • Kim, Seong W.;Kim, Hyunsoo
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.395-405
    • /
    • 2000
  • This article addresses the Bayesian hypothesis testing for the comparison of two exponential mans. Conventional Bayes factors with improper non-informative priors are into well defined. The fractional Byes factor(FBF) of O'Hagan(1995) is used to overcome such as difficulty. we derive proper intrinsic priors, whose Bayes factors are asymptotically equivalent to the corresponding FBFs. We demonstrate our results with three examples.

  • PDF

A Multiple Test of a Poisson Mean Parameter Using Default Bayes Factors (디폴트 베이즈인자를 이용한 포아송 평균모수에 대한 다중검정)

  • 김경숙;손영숙
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.2
    • /
    • pp.118-129
    • /
    • 2002
  • A multiple test of a mean parameter, λ, in the Poisson model is considered using the Bayes factor. Under noninformative improper priors, the intrinsic Bayes factor(IBF) of Berger and Pericchi(1996) and the fractional Bayes factor(FBF) of O'Hagan(1995) called as the default or automatic Bayes factors are used to select one among three models, M$_1$: λ< $λ_0, M$_2$: λ= $λ_0, M$_3$: λ> $λ_0. Posterior probability of each competitive model is computed using the default Bayes factors. Finally, theoretical results are applied to simulated data and real data.

A Bayesian Test for Simple Tree Ordered Alternative using Intrinsic Priors

  • Kim, Seong W.
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.1
    • /
    • pp.73-92
    • /
    • 1999
  • In Bayesian model selection or testing problems, one cannot utilize standard or default noninformative priors, since these priors are typically improper and are defined only up to arbitrary constants. The resulting Bayes factors are not well defined. A recently proposed model selection criterion, the intrinsic Bayes factor overcomes such problems by using a part of the sample as a training sample to get a proper posterior and then use the posterior as the prior for the remaining observations to compute the Bayes factor. Surprisingly, such Bayes factor can also be computed directly from the full sample by some proper priors, namely intrinsic priors. The present paper explains how to derive intrinsic priors for simple tree ordered exponential means. Some numerical results are also provided to support theoretical results and compare with classical methods.

  • PDF

Default Bayesian one sided testing for the shape parameter in the log-logistic distribution

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1583-1592
    • /
    • 2015
  • This paper deals with the problem of testing on the shape parameter in the log-logistic distribution. We propose default Bayesian testing procedures for the shape parameter under the reference priors. The reference prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. We can solve the this problem by the intrinsic Bayes factor and the fractional Bayes factor. Therefore we propose the default Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.