• Title/Summary/Keyword: Intracerebroventricular streptozotocin

Search Result 2, Processing Time 0.022 seconds

Effects of Erythropoietin on Memory Deficits and Brain Oxidative Stress in the Mouse Models of Dementia

  • Kumar, Rohit;Jaggi, Amteshwar Singh;Singh, Nirmal
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.345-352
    • /
    • 2010
  • The present study was undertaken to explore the potential of erythropoietin in memory deficits of mice. Memory impairment was produced by scopolamine (0.5 mg/kg, $i.p.$) and intracerebroventricular streptozotocin (i.c.v STZ, 3 mg/kg, $10{\mu}l$, $1^{st}$ and $3^{rd}$ day) in separate groups of animals. Morris water-maze test was employed to assess learning and memory. The levels of brain thio-barbituric acid reactive species (TBARS) and reduced glutathione (GSH) were estimated to assess degree of oxidative stress. Brain acetylcholinesterase enzyme (AChE) activity was also measured. Scopolamine/streptozotocin administration induced significant impairment of learning and memory in mice as indicated by marked decrease in Morris water-maze performance. Scopolamine/streptozotocin administration also produced a significant enhancement of brain AChE activity and brain oxidative stress (an increase in TBARS and a decrease in GSH) levels. Treatment of erythropoietin (500 and 1,000 IU/Kg i.p.) significantly reversed scopolamine- as well as streptozotocin-induced learning and memory deficits along with attenuation of those-induced rise in brain AChE activity and brain oxidative stress levels. It may be concluded that erythropoietin exerts a beneficial effect in memory deficits of mice possibly through its multiple actions including potential anti-oxidative effect.