• Title/Summary/Keyword: Intracellular pathogenic bacteria

Search Result 17, Processing Time 0.026 seconds

Antimicrobial Effect of Furaneol Against Human Pathogenic Bacteria and Fungi

  • Sung Woo-Sang;Jung Hyun-Jun;Lee In-Seon;Kim Hyun-Soo;Lee Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.349-354
    • /
    • 2006
  • Furaneol, a key aroma compound found in strawberry, pineapple, and processed foodstuffs, has been known to possess various biological activities on animal models. In this study, the antimicrobial effects of furaneol against human pathogenic microorganisms were investigated. The results indicated that furaneol displayed a broad spectrum of antimicrobial activities against Gram-positive and Gram-negative bacteria and fungi without hemolytic activity on human erythrocyte cells. To confirm the antifungal activity of furaneol, we examined the accumulation of intracellular trehalose as a stress response marker on toxic agents and its effect on dimorphic transition of Candida albicans. The results demonstrated that furaneol induced significant accumulation of intracellular trehalose and exerted its antifungal effect by disrupting serum-induced mycelial forms. These results suggest that furaneol could be a therapeutic agent having a broad spectrum of antimicrobial activity on human pathogenic microorganisms.

Free Living Amoeba-Bacteria Interactions: Analysis of Escherichia coli Interactions with Nonpathogenic or Pathogenic Free Living Amoeba

  • Jung, Suk-Yul
    • Biomedical Science Letters
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • Free-living amoebae ingest several kinds of bacteria. In other words, the bacteria can survive within free-living amoeba. To determine how Escherichia coli K1 isolate causing neonatal encephalitis and non-pathogenic K12 interact with free-living amoebae, e.g., Acanthamoeba castellanii (T1), A. astronyxis (T7), Naegleria fowleri, association, invasion and survival assays were performed. To understand pathogenicity of free-living amoebae, in vitro cytotoxicity assay were performed using murine macrophages. T1 destroyed macrophages about 64% but T7 did very few target cells. On the other hand, N. fowleri which needed other growth conditions rather than Acanthamoeba destroyed more than T1 as shown by lactate dehydrogenase (LDH) release assay. In association assays for E. coli binding to amoebae, the T7 exhibited significantly higher association with E. coli, compared with the T1 isolates (P<0.01). Interestingly, N. fowleri exhibited similar percentages of association as T1. Once E. coli bacteria attach or associate with free-living amoeba, they can penetrate into the amoebae. In invasion assays, the K1 (0.67%) within T1 was observed compared with K12 (0%). E. coli K1 and K12 exhibited high association with N. fowleri and bacterial CFU. To determine the fate of E. coli in long-term survival within free-living amoebae, intracellular survival assays were performed by incubating E. coli with free-living amoebae in PBS for 24 h. Intracellular E. coli K1 within T1 (2.5%) and T7 (1.8%) were recovered and grown, while K12 were not found. N. fowleri was not invaded and here it was not recovered.

The Potential Probiotic and Functional Health Effects of Lactic Acid Bacteria Isolated from Traditional Korean Fermented Foods (한국 전통발효식품에서 분리한 유산균의 프로바이오틱스 특성 및 건강기능성 연구)

  • Ohn, Jeong-Eun;Seol, Min-Kyeong;Bae, Eun-Yeong;Cho, Young-Je;Jung, Hee-Young;Kim, Byung-Oh
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.581-591
    • /
    • 2020
  • This study investigated the probiotic properties and physiological activities of Korean fermented foods such as sikhae, young radish kimchi, and bean-curd dregs. Among the isolated lactic acid bacteria, Pediococcus inopinatus BZ4, Lactobacillus plantarum SH1, Lactobacillus brevis SH14, Pediococcus pentosaceus YMT1, and Leuconostoc mesenteroides YMT6 demonstrated a greater than 60% survival rate at pH 2.5, along with an excellent survival rate even at 0.3% bile acid. These five bacteria showed strong flocculation ability in autoaggregation and coaggregation tests, indirectly clustering useful micro-organisms and inhibiting the attachment of pathogenic bacteria. In a cell surface hydrophobicity test, these bacteria showed adhesion to three solvents (ethyl acetate, chloroform, and xylene) and high hydrophobicity, thereby indicating excellent indirect cell adhesion to intestinal cells. The cell-free supernatants and intracellular extracts of the five lactic acid bacteria showed antioxidative activity in the form of 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability and lipid peroxidation inhibition. Antimicrobial activities were also observed in four pathogenic bacteria, namely E. coli KCTC 2571, H. pylori HPKCTC B0150, L. monocytogenes KCTC 13064, and S. aureus KCTC 1916. These results demonstrate that these five lactic acid bacteria could be used as probiotics with antioxidant and antimicrobial properties.

Analysis of Genes Involved in the Pathogenesis of Intracellularly Survival Bacteria (세포내 기생세균의 병원성 관련 유전자의 분석에 관하여)

  • Jeon, Tae-Il;Lee, Tae-Yoon;Kim, Sung-Kwang
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.248-255
    • /
    • 1992
  • Eight bacterial strains were examined whether they have phoP/phoQ genes which were known to be involved in the intracellular survival of Salmonella typhimurium. The phoP/phoQ operon were known to sense the stimuli of the genes involved in the adaptation of the environment. Using 514-basepairs EcoRV DNA fragment of phoP region of Salmonella typhimurium as a probe, dot blot hybridization were performed. Chromosomal DNAs of Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marscescens, Enterobacter cloacae, Salmonella typhimurium, Escherichia coli, Shigella dysenteriae, and Listeria monocytogenes were examined by DNA hybridization assay. Against our expectation, intracellular pathogen, L. monocytogenes, did not have similar DNA sequences to phoP/phoQ of S. typhimurium, while E. coli, S. dysenteriae, and E. cloacae showed the positive signal even though they were not intracellular pathogens. This result suggested that the phoP/PhoQ operon was absent in intracellular pathogenic bacterias other than S. typhimurium. Rather it was found in phylogenetically closer bacterias to S. typhimurium, which were not able to survive in intracellular environment. Some different mechanism, which is not dependent on phoP/PhoQ operon, could be involved in the intracelluar survival of L. monocytogenes.

  • PDF

ClC Chloride Channels in Gram-Negative Bacteria and Its Role in the Acid Resistance Systems

  • Minjeong Kim;Nakjun Choi;Eunna Choi;Eun-Jin Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.857-863
    • /
    • 2023
  • Pathogenic bacteria that colonize the human intestinal tract have evolved strategies to overcome acidic conditions when they pass through the gastrointestinal tract. Amino acid-mediated acid resistance systems are effective survival strategies in a stomach that is full of amino acid substrate. The amino acid antiporter, amino acid decarboxylase, and ClC chloride antiporter are all engaged in these systems, and each one plays a role in protecting against or adapting to the acidic environment. The ClC chloride antiporter, a member of the ClC channel family, eliminates negatively charged intracellular chloride ions to avoid inner membrane hyperpolarization as an electrical shunt of the acid resistance system. In this review, we will discuss the structure and function of the prokaryotic ClC chloride antiporter of amino acid-mediated acid resistance system.

Two- Dimensional Electrophoresis Analysis of Proteins; Bacillus subtilis LTD and Its Antifungal Activity Deficient Mutant

  • Lee, Young-Keun;Dinh, Le Thi;Jang, Yu-Sin;Chung, Hye-Young;Chang, Hwa-Hyoung
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.487-493
    • /
    • 2004
  • To investigate the antifungal activity related protein in pesticidal bacteria, a bacterial strain LTD was isolated from soil collected at Gimje in Jeonbuk province, Korea, and identified as Bacillus subtilis LTD based on a API50 CHB kit and 168 rDNA sequencing. It has an antifungal activity against 9 plant pathogenic fungi in a paper disc assay. The antifungal activity- deficient mutant, B. subtilis mLTD was induced at a 5 kGy dose of $^{60}Co$ gamma radiation. Using the two-dimensional electrophoresis and the matrix assisted laser desorption ionization time-of-flight mass spectrometry, the comparison analysis of proteins between the wild and mutant were performed. A major intracellular serine proteinase IspA (MW: 32.5 kDa), a NAD (P) H dehydrogenase (MW: 20.0 kDa), and a stage II sporulation protein AA, SpoIIAA (MW: 14.3kDa) were detected only in the B. subtilis LTD. These results suggested that the functions of these proteins found only in the B. subtilis LTD could. be closely related to the antifungal activity against plant pathogenic fungi.

Effective Antibacterial Action of Tat (47-58) by Increased Uptake into Bacterial Cells in the Presence of Trypsin

  • Jung, Hyun-Jun;Jeong, Kyu-Shik;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.990-996
    • /
    • 2008
  • In a previous study, we found an antifungal effect on human pathogenic fungi by the cell-penetrating peptide Tat (47-58) derived from HIV-1. Tat (47-58) immediately entered into the fungal nucleus and affected some physiological changes on the intracellular condition. In this study, Tat (47-58) showed a broad spectrum of antibacterial activity against pathogenic bacteria including bacterial clinical isolates. To improve resistance against proteases for use in vivo, we synthesized an analog of Tat (47-58) by substituting the L-amino acid for the D-amino acid. The D-enantiomer of Tat (47-58) also exhibited a broad spectrum of antibacterial activity at almost the same level of L-Tat (47-58) concentration. Unlike L-Tat (47-58), D-Tat (47-58) showed a significant proteolytic resistance against all proteases tested and antimicrobial activities in the presence of trypsin. Moreover, D-Tat (47-58) inhibited MRSA infection in human HeLa cells whereas L-Tat (47-58) partially allowed MRSA infection, and the results were due to the proteolytic resistance of D-Tat (47-58).

In Vitro Antibacterial Effects of the Chimeric Peptides from Chicken and Pig Antimicrobial Peptide NK-Lysin (닭과 돼지의 항균펩타이드 NK-Lysin으로부터 조합된 펩타이드의 In Vitro 항균효과)

  • Hong, Yeojin;Lee, Gi Yong;Yang, Soo-Jin;Lillehoj, Hyun Soon;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.49 no.2
    • /
    • pp.69-77
    • /
    • 2022
  • Antimicrobial peptides (AMPs) play an important role in innate immunity against pathogenic infections. AMPs exterminate pathogenic bacteria by disrupting cell membranes or inhibiting intracellular molecules. NK-2, first identified in pigs and derived from NK-lysin, has antimicrobial effects against bacteria and parasites. In this study, chimeric peptides (cpNK) of chicken and pig NK-2 and cpNK-derived peptides (cpNK-a1 and cpNK-a2) were synthesized, and their antimicrobial effects against various pathogenic bacteria such as Escherichia coli, Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA) were investigated. The structure of chimeric peptides from chicken and pig NK-2, cpNK, include α-helix like NK-2 and peptide net charge was +9 like porcine NK-2. The cpNK peptide showed powerful bactericidal effects against most bacterial species, including MRSA, especially against gram-negative bacteria. Furthermore, cpNK-derived short peptides, cpNK-a1 and a2 also showed bactericidal activity, but the effects were weaker than those of cpNK. Therefore, we conclude that cpNK- and cpNK-derived short peptides have the potential to be used as antibiotic alternatives.

Chitosan Silver Nano Composites (CAgNCs) as Antibacterial Agent Against Fish Pathogenic Edwardsiella tarda (어류 병원성 균주 Edwardsiella tarda에 대한 키토산-실버 나노입자의 항박테리아 효과)

  • Dananjaya, S.H.S.;Godahewa, G.I.;Lee, Youngdeuk;Cho, Jongki;Lee, Jehee;De Zoysa, Mahanama
    • Journal of Veterinary Clinics
    • /
    • v.31 no.6
    • /
    • pp.502-506
    • /
    • 2014
  • Recently nano particles have proven for wide array of bioactive properties. In the present study, antibacterial properties of chitosan silver nano composites (CAgNCs) were investigated against fish pathogenic Edwardsiella tarda. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CAgNCs against E. tarda were $25{\mu}g/mL$ and $125{\mu}g/mL$, respectively. The field emission scanning electron microscope (FE-SEM) image of CAgNCs treated E. tarda showed the strongly damaged bacteria cells than non-treated bacteria. Furthermore, treatment of CAgNCs induced the level of intracellular reactive oxygen species (ROS) in E. tarda cells in concentration and time dependent manner suggesting that it may generate oxidative stress leading to bacterial cell death. In addition, MTT assay results showed that the lowest cell viability at $100{\mu}g/mL$ of CAgNCs treated E. tarda. Overall results of this study suggest that CAgNCs is a potential antibacterial agent to control pathogenic bacteria.

Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis

  • Jena, Jayashree;Pradhan, Nilotpala;Nayak, Rati Ranjan;Dash, Bishnu P.;Sukla, Lala Behari;Panda, Prasanna K.;Mishra, Barada K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.522-533
    • /
    • 2014
  • Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of $Ag^+$ ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of $Ag^+$ ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.