• 제목/요약/키워드: Intracellular bacteria

검색결과 157건 처리시간 0.023초

Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host

  • Ma, Zhongchen;Yu, Shuifa;Cheng, Kejian;Miao, Yuhe;Xu, Yimei;Hu, Ruirui;Zheng, Wei;Yi, Jihai;Zhang, Huan;Li, Ruirui;Li, Zhiqiang;Wang, Yong;Chen, Chuangfu
    • Journal of Veterinary Science
    • /
    • 제23권1호
    • /
    • pp.8.1-8.15
    • /
    • 2022
  • Background: Brucella infection induces brucellosis, a zoonotic disease. The intracellular circulation process and virulence of Brucella mainly depend on its type IV secretion system (T4SS) expressing secretory effectors. Secreted protein BspJ is a nucleomodulin of Brucella that invades the host cell nucleus. BspJ mediates host energy synthesis and apoptosis through interaction with proteins. However, the mechanism of BspJ as it affects the intracellular survival of Brucella remains to be clarified. Objectives: To verify the functions of nucleomodulin BspJ in Brucella's intracellular infection cycles. Methods: Constructed Brucella abortus BspJ gene deletion strain (B. abortus ∆BspJ) and complement strain (B. abortus pBspJ) and studied their roles in the proliferation of Brucella both in vivo and in vitro. Results: BspJ gene deletion reduced the survival and intracellular proliferation of Brucella at the replicating Brucella-containing vacuoles (rBCV) stage. Compared with the parent strain, the colonization ability of the bacteria in mice was significantly reduced, causing less inflammatory infiltration and pathological damage. We also found that the knockout of BspJ altered the secretion of cytokines (interleukin [IL]-6, IL-1β, IL-10, tumor necrosis factor-α, interferon-γ) in host cells and in mice to affect the intracellular survival of Brucella. Conclusions: BspJ is extremely important for the circulatory proliferation of Brucella in the host, and it may be involved in a previously unknown mechanism of Brucella's intracellular survival.

Quorum Quenching Bacteria Isolated from the Sludge of a Wastewater Treatment Plant and Their Application for Controlling Biofilm Formation

  • Kim, A-Leum;Park, Son-Young;Lee, Chi-Ho;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권11호
    • /
    • pp.1574-1582
    • /
    • 2014
  • Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHL-degrading bacteria were isolated from the sludge sample by enrichment culture. Afipia sp., Acinetobacter sp. and Streptococcus sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp., Micrococcus sp. and Staphylococcus sp. produced the extracellular QQ enzyme. In case of Microbacterium sp. and Rhodococcus sp., AHL-degrading activities were detected in the whole-cell assay and Rhodococcus sp. showed AHL-degrading activity in cell-free lysate as well. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms.

Hexavalent Chromium Reduction by Bacteria from Tannery Effluent

  • Batool, Rida;Yrjala, Kim;Hasnain, Shahida
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권4호
    • /
    • pp.547-554
    • /
    • 2012
  • Chromium is generated from several industrial processes. It occurs in different oxidation states, but Cr(III) and Cr(VI) are the most common ones. Cr(VI) is a toxic, soluble environmental contaminant. Some bacteria are able to reduce hexavalent chromium to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of considerable interest. An indigenous chromium-reducing bacterial strain, Rb-2, isolated from a tannery water sample, was identified as Ochrobactrum intermedium, on the basis of 16S rRNA gene sequencing. The influence of factors like temperature of incubation, initial concentration of Cr, mobility of bacteria, and different carbon sources were studied to test the ability of the bacterium to reduce Cr(VI) under variable environmental conditions. The ability of the bacterial strain to reduce hexavalent chromium in artificial and industrial sewage water was evaluated. It was observed that the mechanism of resistance to metal was not due to the change in the permeability barrier of the cell membrane, and the enzyme activity was found to be inductive. Intracellular reduction of Cr(VI) was proven by reductase assay using cell-free extract. Scanning electron microscopy revealed chromium precipitates on bacterial cell surfaces, and transmission electron microscopy showed the outer as well as inner distribution of Cr(VI). This bacterial strain can be useful for Cr(VI) detoxification under a wide range of environmental conditions.

S-Adenosyl-L-methionine (SAM) Production by Lactic Acid Bacteria Strains Isolated from Different Fermented Kimchi Products

  • Lee, Myung-Ki;Lee, Jong-Kyung;Son, Jeong-A;Kang, Mun-Hui;Koo, Kyung-Hyung;Suh, Joo-Won
    • Food Science and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.857-860
    • /
    • 2008
  • S-Adenosyl-L-methionine (SAM) is a bioactive material used in the treatment of depression, osteoarthritis, and liver disease. To obtain lactic acid bacteria (LAB) producing high concentrations of SAM, LAB were isolated from commercial kimchi and from prepared kimchi products that contained shrimp jeotgal (fermented salty seafood) or sand lance jeotgal or that were fermented at 5 or $10^{\circ}C$, respectively, when pH was 4.2 to 4.8 and titratable acidity 0.6 to 0.9. Among the 179 LAB strains isolated from the fermented kimchi products, the genus Leuconostoc produced the highest intracellular level of SAM (1.58 mM) and Lactobacillus produced the second highest level (up to 1.47 mM) in the strain culture. This is the first study to quantify SAM in LAB isolated from fermented kimchi prepared by a general kimchi recipe. Ultimately, the selected strains (Leuconostoc mesentroides subsp. mesenteroides/dextranicum KSK417, L. mesentroides subsp. mesenteroides/dextranicum KJM401, and Lactobacillus bifermentans QMW327) could be useful as starters to manufacture fermented foods containing high levels of SAM.

유산균 배양액 첨가 사료에 의한 숭어, Mugil cephalus의 성장, 혈액 및 비특이적 면역학적 반응 효과 (Dietary Effects of Lactic Acid Bacteria on Growth, Hematological and Immune Responses of Grey Mullet, Mugil cephalus)

  • 민은영;김용석;강주찬
    • 한국어병학회지
    • /
    • 제23권3호
    • /
    • pp.343-355
    • /
    • 2010
  • This study was conducted to investigate the dietary effects of lactic acid bacteria (LAB) supplementation on growth, hematological and immune responses of grey mullet, Mugil cephalus. Three replicate groups of grey mullet (body length, $62.8{\pm}1.04\;mm$ ; body weight, $3.2{\pm}0.13\;mg$) were fed the experimental diets with 0 (control), 1, 2.5 and 5,0 % of LAB for 3 months. Total body length growth rate was increased in 2.5 % supplementation group compared to control (P<0.05). No differences were observed in hematological parameters (hematocrit, hemoglobin, RBCs) and serum chemistry (calcium, magnesium, total protein, glucose, GOT and GPT). The antioxidant activity of grey mullet fed the 5.0 % LAB diets was significantly higher than that of other groups (P<0.05). Both intracellular superoxide anion production and lysozyme activity of kidney were higher in the 2.5 % LAB diet than in the control (P<0.05).

Bioconversion Products of Whey by Lactic Acid Bacteria Exert Anti-Adipogenic Effect

  • Lee, Ji Soo;Hyun, In Kyung;Yoon, Ji-Won;Seo, Hye-Jin;Kang, Seok-Seong
    • 한국축산식품학회지
    • /
    • 제41권1호
    • /
    • pp.145-152
    • /
    • 2021
  • Microbial bioconversion using lactic acid bacteria (LAB) provides several human health benefits. Although whey and whey-derived bioactive compounds can contribute to an improvement in human health, the potential anti-obesity effect of whey bioconversion by LAB has not been well studied. This study aimed to investigate whether bioconversion of whey by Pediococcus pentosaceus KI31 and Lactobacillus sakei KI36 (KI31-W and KI36-W, respectively) inhibits 3T3-L1 preadipocyte differentiation. Both KI31-W and KI36-W reduced intracellular lipid accumulation significantly, without decreasing 3T3-L1 preadipocyte proliferation. In addition, obesity-related transcription factor (peroxisome proliferator-activated receptor γ) and genes (adipocyte fatty acid-binding protein and lipoprotein lipase) were down-regulated significantly in 3T3-L1 cells in the presence of KI31-W and KI36-W. Collectively, these results suggest that bioconversion of whey by LAB exhibits anti-adipogenic activity and may be applied as a therapeutic agent for obesity.

보리새우(Penaeus japonicus)에 감염된 Mollicute-like Organism (Detection of a mollicute-like organism in kuruma shrimp, Penaeus japonicus)

  • 최동림;손상규;박명애;허문수;르노 트리스탕
    • 한국어병학회지
    • /
    • 제9권1호
    • /
    • pp.33-40
    • /
    • 1996
  • 자연산 보리새우(Penaeus japonicus) 모하의 병리검사 결과 사상체의 mollicute와 유사한 미생물의 감염을 확인하였다. 검사에 사용된 보리새우 모하는 일본산이며, 한국으로 수입되었다. 일반 조직검사 결과 병리학적인 변화는 관찰되지 않았다. 투과전자현미경적 관찰 결과 간췌장 상피세포에서 세포내 다형태성 사상체 세균의 광범위한 감염을 발견하였다. 사상체 세균은 직경이 약 60nm이며, 길이가 300nm에서 $1{\mu}m$ 이상의 크기를 나타내었다. 이 세균의 구조는 사상체이며, 끝마디를 가진 가지로 분지 되는 특징을 보였다. 세포벽은 없으며, 원형질막으로만 둘러싸여 있었으며, 전형적인 원핵세포성 리보소음과 선형 DNA와 유사한 가닥을 가지고 있었다. 그 외 다른 세포내 기관은 관찰되지 않았다. 이러한 형태적인 특징들과 세포내 감염부위로 볼 때 이 세균은 mollicutes로 판단된다.

  • PDF

Symbiotic Microorganisms in Aphids (Homoptera, Insecta): A Secret of One Thriving Insect Group

  • Ishikawa, Hajime
    • Animal cells and systems
    • /
    • 제5권3호
    • /
    • pp.163-177
    • /
    • 2001
  • Most, if not all, aphids harbor intracellular bacterial symbionts, called Buchnera, in their bacteriocytes, huge cells differentiated for this purpose. The association between Buchnera and aphids is so intimate, mutualistic and obligate that neither of them can any longer reproduce independently. Buchnera are vertically transmitted through generations of the host insects. Evidence suggests that Buchnera were acquired by a common ancestor of aphids 160-280 million years ago, and have been diversified, since then, in parallel with their aphid hosts. Molecular phylogenetic analyses indicate that Buchnera belong to the g subdivision of the Proteobacteria. Although Buchnera are close relatives of Escherichia coli, they contain move than 100 genomic copies per cell, and their genome size is only one seventh that of E. coli. The complete genome sequence of Buchnera revealed that their gene repertoire is quite different from those of parasitic bacteria such as Mycoplasma, Rickettsia and Chlamydia, though their genome sizes have been reduced to a similar extent. Whereas these parasitic bacteria have lost most genes for the biosynthesis of amino acids, Buchnera retain many of them. In particular, Buchnera's gene repertoire is characteristic in the richness of the genes for the biosynthesis of essential amino acids that the eukaryotic hosts are not able to synthesize, reflecting a nutritional role played by these symbionts. Buchnera, when housed in the bacteriocyte, selectively synthesize a large amount of symbionin, which is a homolog of GroEL, the major stress protein of E. coli. Symbionin not only functions as molecular chaperone, like GroEL, but also has evolutionarily acquired the phosphotransferase activity through amino acid substitutions. Aphids usually profit from Buchnera's fuction as a nutritional supplier and, when faced with an emergency, consume the biomass of Buchnera cells as nutrient reserves.

  • PDF

Detection of Polyhydroxyalkanoate-Accumulating Bacteria from Domestic Wastewater Treatment Plant Using Highly Sensitive PCR Primers

  • Huang, Yu-Tzu;Chen, Pi-Ling;Semblante, Galilee Uy;You, Sheng-Jie
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권8호
    • /
    • pp.1141-1147
    • /
    • 2012
  • Polyhydroxyalkanoate (PHA) is a class of biodegradable plastics that have great potential applications in the near future. In this study, the micro-biodiversity and productivity of PHA-accumulating bacteria in activated sludge from a domestic wastewater treatment plant were investigated. A previously reported primer set and a self-designed primer set (phaCF1BO/phaCR2BO) were both used to amplify the PHA synthase (phaC) gene of isolated colonies. The new primers demonstrated higher sensitivity for phaC, and combining the PCR results of the two primer sets was able to widen the range of detected genera and raise the sensitivity to nearly 90%. Results showed that 85.3% of the identified bacteria were Gram-negative, with Ralstonia as the dominant genus, and 14.7% were Gram-positive. In addition, Zoogloea and Rhizobium contained the highest amounts of intracellular PHA. It is apparent that glucose was a better carbon source than pentone or tryptone for promoting PHA production in Micrococcus. Two different classes, class I and class II, of phaC were detected from alphaproteobacteria, betaproteobacteria, and gammaproteobacteria, indicating the wide diversity of PHA-accumulating bacteria in this particular sampling site. Simultaneous wastewater treatment and PHA production is promising by adopting the high PHA-accumulating bacteria isolated from activated sludge.

Reactive Oxygen Species Depletion by Silibinin Stimulates Apoptosis-Like Death in Escherichia coli

  • Lee, Bin;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권12호
    • /
    • pp.2129-2140
    • /
    • 2017
  • Silibinin is the major active component of silymarin, extracted from the medicinal plant Silybum marianum. Silibinin has potent antibacterial activity; however, the exact mechanism underlying its activity has not been elucidated. Here, we investigated the novel mechanism of silibinin against Escherichia coli. Time-kill kinetic assay showed that silibinin possess a bactericidal effect at minimal inhibitory concentration (MIC) and higher concentrations (2-and 4-fold MIC). At the membrane, depolarization and increased intracellular $Ca^{2+}$ levels were observed, considered as characteristics of bacterial apoptosis. Additionally, cells treated with MIC and higher concentrations showed apoptotic features like DNA fragmentation, phosphatidylserine exposure, and caspase-like protein expression. Generally, apoptotic death is closely related with ROS generation; however, silibinin did not induce ROS generation but acted as a scavenger of intracellular ROS. These results indicate that silibinin dose-dependently induces bacterial apoptosis-like death, which was affected by ROS depletion, suggesting that silibinin is a potential candidate for controlling bacteria.