• Title/Summary/Keyword: Intra-follicular oocytes

Search Result 8, Processing Time 0.026 seconds

Antrum Formation and Growth In Vitro of Mouse Pre-antral Follicles Cultured in Media without Hormones (호르몬 무 첨가 배양액에서 생쥐 Pre-antral Follicles의 체외성장과 난포강 형성)

  • Park, Kee-Sang;Kim, Ju-Hwan;Lee, Taek-Hoo;Song, Hai-Bum;Chun, Sang-Sik
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.2
    • /
    • pp.79-86
    • /
    • 2001
  • Objective: Mouse pre-antral follicles require the addition of gonadotropins (Gns) to complete maturation and ovulation of oocyte and antrum formation in vitro. However, we tried examination of in vitro growth of mouse pre-antral follicles in medium without Gns and/or phygiological factors. And also, pre-antral follicles were isolated from ovaries by mechanical method. Our present studies were conducted to evaluate on the growth of follicles and intra-follicular oocytes and antrum formation in vitro of mouse pre-antral follicles in two different media. Methods: Pre-antral follicles ($91{\sim}120{\mu}m$) were isolated mechanically by fine 30G needles not using enzymes from ovaries of 3-6 week-old female ICR mice. Isolated pre-antral follicles were cultured in $20{\mu}l$ droplets of TCM (n=17; follicles: $107.8{\pm}1.58{\mu}m$; oocytes: $57.9{\pm}1.2{\mu}m$) or MEM (n=12; follicles: $109.3{\pm}2.53{\mu}m$; oocytes: $55.4{\pm}1.6{\mu}m$) under mineral oil on the 60 mm culture dish. All experimental media was supplemented with 10% FBS without Gns and/or physiological factors. Pre antral follicles were individually cultured for 8 days. Antram formation and growth of pre-antral follicles and intra-follicular oocytes were evaluated using precalibrated ocular micrometer at X200 magnifications during in vitro culture. Results were analyzed using combination of Student's t-test and Chi-square, and considered statistically significant when p<0.05. Results: Antrum formation had started in two culture media on day 2. On day 8, antrum formation had occurred in 58.3% of pre-antral follicles cultured in DMEM, but only in 23.5% of those cultured in TCM (p=0.0364). Growth of pre-antral follicles and intra-follicular oocytes were observed on day 4 and 8. On day 4, follicular diameter was similar (p=0.1338) in TCM ($119.4{\pm}2.58{\mu}m$) and MEM ($125.4{\pm}4.52{\mu}m$). However, on day 8, diameters of pre-antral follicles cultured in MEM ($168.9{\pm}17.29{\mu}m$) were significantly bigger (p=0.0248) than that in TCM ($126.7{\pm}4.28{\mu}m$). On day 4 and 8, diameters of intra-follicular oocytes were similar in TCM ($67.1{\pm}1.3$ and $72.4{\pm}0.9{\mu}m$) and MEM ($65.2{\pm}1.7$ and $73.3{\pm}1.5{\mu}m$), respectively. Conclusion: We can conform that medium without Gns and/or physiological factors can be used for in vitro antrum formation and growth of pre-antral follicles and intra-follicular oocytes in mouse. In conclusion, MEM supplemented with FBS can be used for growth in vitro of mouse pre-antral follicles isolated mechanically.

  • PDF

Relationship between Initial Size of Pre-Antral Follicles and Intra-Follicular Oocytes and Their In Vitro Growth in Mice

  • Song, Hai-Bum;Park, Kee-Sang;Kim, Ju-Hwan;Lee, Tae-Hoo;Chun, Sang-Sik
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.243-243
    • /
    • 2004
  • Purpose: This study was conducted to obtain the relationship between initial size of pre-antral follicles (PAF) and intra-follicular oocytes (IFO) and their in vitro growth (IVG) in medium without gonadotropins (Gns) using PAF isolated from mouse ovaries mechanically. (omitted)

  • PDF

Antrum Formation and Growth of Mouse Pre-antral Follicles Cultured in Two Different Culture Media without Hormones

  • Kim, Ju-Hwan;Kim, Hwan-Tae;Park, Kee-Sang;Song, Hai-Bum;Chun, Sang-Sik
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.8-8
    • /
    • 2001
  • Mouse follicles require the addition of gonadotropins (Gns) to complete maturation and ovulation of oocyte and antrum formation of follicles in vitro. However, we tried examination of in vitro growth of mouse pre-antral follicles in medium without Gns and physiological factors. And also, pre-antral follicles were isolated from ovaries by mechanical method. Our present studies were conducted to evaluate on the growth of follicles and intra-follicular oocytes and antrum formation in vitro of mouse pre-antral follicles in two different media. Pre-antral follicles (91-120${\mu}{\textrm}{m}$) were isolated mechanically by fine 30G needles not using enzymes from ovary of 3-6 weeks old female ICR mice. Isolated pre-antral follicles were cultured in 20 ${mu}ell$ droplets of TCM (n=17; follicles: 107.8 $\pm$ 1.58 ${\mu}{\textrm}{m}$; oocytes: 59.9$\pm$1.2 ${\mu}{\textrm}{m}$) or MEM (n=12; follicles: 109.3$\pm$2.53 ${\mu}{\textrm}{m}$; oocytes: 55.4 $\pm$1.6${\mu}{\textrm}{m}$) under mineral oil on the 60mm culture dish. All experimental media was supplemented with 10% FBS but without Gns and/or physiological factors. Pre-antral follicles were individually cultured in drops for 8 days. Antrum formation and growth of pre-antral follicles and intra-follicular oocytes were evaluated using a precalibrated ocular micrometer at $\times$200 magnifications during in vitro culture. Results between different groups were analyzed using combination of Student's t-test and Chi-square, and considered statistically significant when P<0.05. Antrum formation of pre-antral follicles had started in two culture media on day-2. On day-8, antrum formation had occurred in 58.3%(7/12) of pre-antral follicles cultured in MEM, but only in 23.5% (4/17) of those cultured in TCM (P=0.0364). Growth of pre-antral follicles and intra-follicular oocytes were observed on day-4 and -8. On day-4, follicular diameters was similar (P=0.1338) in TCM (119.4$\pm$2.58 ${\mu}{\textrm}{m}$) and MEM (125.4$\pm$4.52 ${\mu}{\textrm}{m}$). However, on day-8, diameters of pre-antral follicles cultured in MEM (168.9$\pm$17.29 ${\mu}{\textrm}{m}$) was significantly (P=0.0248) bigger than that in TCM (126.7$\pm$4.28 ${\mu}{\textrm}{m}$). On day-4 and -8, diameters of intra-follicular oocytes were similar TCM (67.1$\pm$1.3 and 72.4$\pm$0.9${\mu}{\textrm}{m}$) and MEM (65.2$\pm$1.7 and 73.3$\pm$1.5 ${\mu}{\textrm}{m}$), respectively. We can conform that medium not supplemented with Gns and/or physiological factors can be used for in vitro antrum formation and growth of mouse pre-antral follicles and intra-follicular oocytes. In conclusion, MEM supplemented with FBS can be used for growth in vitro of mouse pre-antral follicles isolated mechanically.

  • PDF

Detection of Proteins from Porcine Follicular Fluid and Their Effect on the Maturation of Mouse Oocytes in vitro (돼지 여포액내(慮胞液內) 단백질(蛋白質)의 검출(檢出)과 배양중(培養中)인 생쥐란자(卵子)의 성숙(成熟)에 미치는 그의 영향에 관하여)

  • Bae, In-Ha;Hwang, Sung-Yun;Chung, Soon-O;Cho, Wan-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1981
  • It has been already suggested that specific macromolecules in follicular fluid produced by granulosa cells may play a role in suppressing further meiotic maturation of the oocytes. In general, the search for specific macromolecules in follicular fluid using immunological methods has not been rewarding. These studies were designed, by applying more effective immunological methods than conventionally employed, (l) to identify whether some unknown macromolecules are present in the porcine follicular fluid or not, and (2) to clarify the relationship between the oocytes and the specific macromolecules in the follicular fluid. The results obtained were as follows; (1) porcine follicular fluid contained two specific proteins, which were not present in pig plasma and serum. (2) each of two proteins showed electrophoretically fast alpha-globulin and beta-globulin mobilities. (3) these proteins seemed to have inhibitory effect on the maturation of mouse oocytes in vitro. From these results, it can be assumed that pig follicular fluid contains specific proteins which seem to be intra-follicular inhibitor(s) of oocyte maturation.

  • PDF

In vitro maturation using αMEM with reduced NaCl enhances maturation and developmental competence of pig oocytes after somatic cell nuclear transfer

  • Lee, Yongjin;Lee, Joohyeong;Hyun, Sang-Hwan;Lee, Geun-Shik;Lee, Eunsong
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.31.1-31.13
    • /
    • 2022
  • Background: Compared to medium containing 108 mM sodium chloride (NaCl), in vitro maturation (IVM) using a simple medium with reduced (61.6 mM) NaCl increases the cytoplasmic maturation and embryonic development of pig oocytes. Objectives: This study determines the effect of a complex medium containing reduced NaCl on the IVM and embryonic development of pig oocytes. Methods: Pig oocytes were matured in Minimum Essential Medium Eagle-alpha modification (αMEM) supplemented with 61.6 (61αMEM) or 108 (108αMEM) mM NaCl, and containing polyvinyl alcohol (PVA) (αMEMP) or pig follicular fluid (PFF) (αMEMF). Medium-199 (M199) served as the control for conventional IVM. Cumulus cell expansion, nuclear maturation, intra-oocyte glutathione (GSH) contents, size of perivitelline space (PVS), and embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) were evaluated after IVM. Results: Regardless of PVA or PFF supplementation, oocytes matured in 61αMEM showed increased intra-oocyte GSH contents and width of PVS (p < 0.05), as well as increased blastocyst formation (p < 0.05) after PA and SCNT, as compared to oocytes matured in 108αMEMP and M199. Under conditions of PFF-enriched αMEM, SCNT oocytes matured in 61αMEMF showed higher blastocyst formation (p < 0.05), compared to maturation in 108αMEMF and M199, whereas PA cultured oocytes showed no significant difference. Conclusions: IVM in αMEM supplemented with reduced NaCl (61.6 mM) enhances the embryonic developmental competence subsequent to PA and SCNT, which attributes toward improved oocyte maturation.

Control of ovarian primordial follicle activation

  • Kim, Jin-Yeong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.1
    • /
    • pp.10-14
    • /
    • 2012
  • The ovarian follicles develop initially from primordial follicles. The majority of ovarian primordial follicles are maintained quiescently as a reserve for the reproductive life span. Only a few of them are activated and develop to an advanced follicular stage. The maintenance of dormancy and activation of primordial follicles are controlled by coordinated actions of a suppressor/activator with close communications with somatic cells and intra-oocyte signaling pathways. Many growth factors and signaling pathways have been identified and the transforming growth factor-beta superfamily plays important roles in early folliculogenesis. However, the mechanism of maintaining the dormancy and survival of primordial follicles has remained unknown for decades. Recently, since the first finding that all primordial follicles are activated prematurely in mice deficient forkhead box O3a, phosphatidylinositol 3 kinase/phosphatase and tensin homolog (PTEN) signaling pathway was reported to be important in the regulation of dormancy and initial follicular activation. With these informations on early folliculogenesis, clinical application can be expected such as in vitro maturation of immature oocytes or in vitro activation of follicles by PTEN inhibitor in cryopreserved ovarian cortical tissues for fertility preservation.

Studies on the Suitability and Efficiency of Human Follicular Fluid as Protein Supplement in Assisted Reproductive Technology(ART);III. Effect of Human Follicular Fluid on Improvement of Pregnancy Rates in ART (생식보조시술시 단백질원으로서 인간난포액의 적합성 및 효율성에 관한 연구;III. 인간난포액이 생식보조시술시 임신율 향상에 미치는 효과)

  • Koo, J.J.;Chi, H.J.;Kim, D.H.;Kim, J.Y.;Chang, S.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.1
    • /
    • pp.103-108
    • /
    • 1996
  • Through the previous studies(I,II), it was observed that human follicular fluid(HFF) was more effective than human fetal cord serum(HFCS) on promoting meiotic resumption of oocytes and improving embryonic development of mouse in vitro. On the basis of these results, we have gradually exchanged HFCS with HFF as protein supplement in human ART. This study was performed to investigate the efficiency of HFF on improving the pregnancy rate in ART. Oocytes were retrieved transvaginally from patients treated with pituitary suppression with GnRH-agonist and ovarian stimulation with human menopausal gonadotro-pin(HMG) and pure follicle stimulating hormone(FSH). Aspirated oocytes were rinsed and cultured in TCM-199 containing HFF, and the concentrations of HFF were adjusted to 10, 20, and 30% according to the use for insemination, embryo growth and embryo transfer, respectively. As possible as, we tried to do embryo transfer into fallopian tube to mimic the coincidence of the cell stage with the place of sojourn in vivo, so we performed various ART programs(IVF & ET; in vitro fertilization, ZIFT; zygote intra fallopian-tube transfer, ZIFT & ET) according to the tubal conditions of patients. On the while, intra cytoplasmic sperm injection(ICSI) was used to assist IVF of the patients who had shown poor standard IVF results by immunological or severe male factor. Of the 255 cycles of ART programs using HFF as protein supplement, 118 cycles were turn out to be succeeded in pregnancy(46.2%, per cycle, p<0.05), while 21 pregnancies were achieved in the 69 cycles using HFCS(30.4%). The 255 cycles using HFF were subdivided into cycles with the type of ART programs, and each pregnancy rate of the ART programs were 44.7% (IVF & ET, 76/170 cycles), 53.4%(ZIFT, 31/58 cycles) and 40.7% (ZIFT & ET, 11/27 cycles), respectively. In the 61 ICSI cycles using HFF, 28 cycles succeed in pregnancy(45.9%), while 7 pregnancies were obtained in the 17 ICSI cycles using HFCS. Also the ongoing pregnancy rate in the group using HFF(78.8%, 93/118 cycles) was higher than that in the group using HFCS(61.9%). Therefore, we found that the use of HFF as protein supplement was more suitable and effective than the use of HFCS to improve the pregnancy rate in ART.

  • PDF

Effects of Fructose in a Chemically Defined Maturation Medium on Oocyte Maturation and Parthenogenetic Embryo Development in Pigs (돼지 난자의 체외성숙에서 합성배양액에 첨가된 과당이 난자의 성숙 및 단위발생 배아의 체외발육에 미치는 영향)

  • Shin, Hyeji;Kim, Minji;Lee, Joohyeong;Lee, Seung Tae;Park, Choon-Keun;Hyun, Sang-Hwan;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.139-146
    • /
    • 2017
  • The objective of this study was to determine the effect of fructose that was supplemented to a chemically defined in vitro maturation (IVM) medium on oocyte maturation and embryonic development after parthenogenesis in pigs. The base medium for in vitro maturation (IVM) was porcine zygote medium (PZM) that was supplemented with 0.05% (w/v) polyvinyl alcohol (PVA) or 10% (v/v) porcine follicular fluid (pFF). In the first experiment, when immature pig oocytes were matured in a chemically defined medium that was supplemented with 5.5 mM glucose or with 1.5, 3.0 and 5.5 mM fructose, 3.0 mM fructose resulted in a higher nuclear maturation (91.5%) than 1.5 and 5.5 mM fructose (81.9 and 81.9%, respectively) but showed a similar result with 5.5 mM glucose (94.2%). However, there was no significant differences among groups in the embryo cleavage (89.4-92.4%), blastocyst formation (37.5-41.1%), and mean cell number of blastocyst (30.8-34.2 cells). Fructose at the concentration of 3.0 mM (1.08 pixels/oocyte) resulted in a higher intra-oocyte glutathione (GSH) content than 1.5 and 5.5 mM fructose (1.00 and 0.87 pixels/oocytes, respectively) while the cumulus cell expansion was not influenced. In the second experiment, effect of individual and combined supplementation of a chemically defined maturation medium with 5.5 mM glucose or 3.0 mM fructose was examined. No significant effect was found in the nuclear maturation (86.3-92.6%). Embryo cleavage was significantly increased by the combined supplementation with glucose and fructose (95.2%) compared to that with 3.0 mM fructose only (85.7%) while blastocyst formation (37.3-42.8%) and embryonic cell number (33.3-34.1 cells) were not altered. Effect of supplementation of pFF-containing medium with glucose and fructose + glucose was examined in the third experiment. No significant effect by the supplementation with glucose and fructose or glucose alone was observed in the nuclear maturation of oocytes (90.7-94.1%) and blastocyst formation (51.0-56.5%). Our results demonstrate that 3.0 mM fructose was comparable to 5.5 mM glucose in supporting in vitro oocyte maturation and embryonic development after parthenogenesis and could be used as an alternative energy source to glucose for in vitro maturation of pig oocytes.