• Title/Summary/Keyword: Intestinal pathogen bacteria

Search Result 22, Processing Time 0.028 seconds

Stimulation of Platelet-Activating Factor (PAF) Synthesis in Human Intestinal Epithelial Cell Line by Aerolysin from Aeromonas encheleia

  • Nam In-Young;Cho Jae-Chang;Myung Hee-Joon;Joh Ki-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1292-1300
    • /
    • 2006
  • Aeromonas encheleia, a potential human intestinal pathogen, was shown to infect a human intestinal epithelial cell line (Caco-2) in a noninvasive manner. The transcriptional profile of the Caco-2 cells after infection with the bacteria revealed an upregulated expression of genes involved in chloride secretion, including that of phospholipase A2 (PLA2) and platelet-activating factor (PAF) acetylhydrolase (PAFAH2). This was also confirmed by a real-time RT-PCR analysis. As expected from PLA2 induction, PAF was produced when the Caco-2 cells were infected with the bacteria, and PAF was also produced when the cells were treated with a bacterial culture supernatant including bacterial extracellular proteins, yet lacking lipopolysaccharides. Bacterial aerolysin was shown to induce the production of PAF.

Metabolism of Ginseng Saponins by Human Intestinal Bacteria (Park II) (사람의 장내세균에 의한 인삼 사포닌의 대사(제2보))

  • Hasegawa, Hideo;Ha, Joo-Young;Park, Se-Ho;Matumiya, Satoshi;Uchiyama, Masamori;Huh, Jae-Doo;Sung, Jong-Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.1
    • /
    • pp.35-41
    • /
    • 1997
  • Following ginsenoside-Rb1-hydrolyzing assay, strictly anaerobic bacteria were isolated from human feces and identified as Prevotella oris. The bacteria hydrolyzed ginsenoside Rb1 and Rd to $20-O-{\beta}-D-glucopyranosyl-20(S)-protopanaxadiol$ (I), ginsenoside Rb2 to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow}6)-{\beta}-D-glucopyranosyl] - 20(S)-protopanaxadiol$ (ll) and ginsenoside Rc to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow} 6){\beta}-D-g1ucopyranosyl]-20(S)-protopanaxadiol$ (III) like fecal microflora, but did not attack ginsenoside Re nor Rgl (Protopanaxatriol-type). Pharmacokinetic studies of ginseng saponins was also performed using specific pathogen free rats and demonstrated that the intestinal bacterial metabolites I-111, 20(S)- protopanaxatriol(IV) and 20(S)-protopanaxadiol(V) were absorbed from the intestines to $blood(0.4-5.1\;{\mu}g/ml)$ after oral administration with total saponin(1 g/kg/day).

  • PDF

Effects of dietary supplementation of Pediococcus pentosaceus strains from kimchi in weaned piglet challenged with Escherichia coli and Salmonella enterica

  • Dongcheol Song;Jihwan Lee;Kangheung Kim;Hanjin Oh;Jaewoo An;Seyeon Chang;Hyunah Cho;Sehyun Park;Kyeongho Jeon;Yohan Yoon;Yoonjeong Yoo;Younghyun Cho;Jinho Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.611-626
    • /
    • 2023
  • Escherichia coli (E. coli) and Salmonella enterica (SE) infections in pigs are major source associated with enteric disease such as post weaning diarrhea. The aim of this study was to investigate the effects of Pediococcus pentosaceus in weaned piglets challenged with pathogen bacteria. In Experiment.1 90 weaned piglets with initial body weights of 8.53 ± 0.34 kg were assigned to 15 treatments for 2 weeks. The experiments were conducted two trials in a 2 × 5 factorial arrangement of treatments consisting of two levels of challenge (challenge and non-challenge) with E. coli and SE, respectively and five levels of probiotics (Control, Lactobacillus plantarum [LA], Pediococcus pentosaceus SMFM2016-WK1 [38W], Pediococcus acidilactici K [PK], Lactobacillus reuteri PF30 [PF30]). In Experiment.2 a total of 30 weaned pigs (initial body weight of 9.84 ± 0.85 kg) were used in 4 weeks experiment. Pigs were allocated to 5 groups in a randomized complete way with 2 pens per group and 3 pigs per pen. Supplementation of LA and 38W improved (p < 0.05) growth performance, intestinal pathogen bacteria count, fecal noxious odor and diarrhea incidence. In conclusion, supplementation of 38W strains isolated from white kimchi can act as probiotics by inhibiting E. coli and SE.

Probiotics and Intestinal Health (유산균 Probiotics와 장내 건강)

  • Bang, Miseon;Lee, Sang Dae;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.139-143
    • /
    • 2012
  • For human including newborn baby, the intestinal microbiota can play an important role in the development of the intestinal mucosa and in maintaining the balance of the immune cells. Important functions of the intestinal microbiota include the inhibition of the colonization of the intestine by potentially pathogenic microorganisms. Thus, the research of probiotics have been focused on the prevention and treatment of disorders associated with the gastrointestinal tract (GIT), including pathogen infection, traveler's diarrhea, antibiotic-associated diarrhea, and constipation. Probiotics have also been suggested as therapeutic agents against irritable bowel syndrome and inflammatory bowel diseases. An increasing amount of evidence from clinical studies suggests that they are effective in the prevention of atopic allergies and may have potential anti-carcinogenic effects. Until recent years many scientific research for this use has been based on empirical observations. Therefore, probiotics in the form of fermented milk products have been long part of attempts to maintain good health in world wide.

  • PDF

Inhibitory Activity of Bacillus licheniformis AJ on the Growth of Diarrheal Pathogens (Bacillus licheniformis AJ 균주제제의 설사원인 미생물의 성장 억제효과)

  • 김지영;배은아;한명주;김동현
    • Biomolecules & Therapeutics
    • /
    • v.7 no.4
    • /
    • pp.385-389
    • /
    • 1999
  • The injibitory effect of Bacillus licheniformis AJ isolated from genitourinary normal flora as a new probiotics on the growth of diarrheal pathogens was studied. This B. licheniformis AJ inhibited the growth of E.coli O-157. Salmonella typhi and Shigella sonnei as well as the infectivity of rotavirus. However, it did not inhibit the growth of Helicobacter pyloriand human intestinal bacteria although it inhibited the harmful enzyme activity of human intestinal bacteria. B. licheniformis AJ seems to excret heat-lable growth-inhibitory protein, bacteriocin, into the media. These results suggest that B. lichenoformis AJ could be used as a new type of probiotics.

  • PDF

Integrative Analysis of Probiotic-Mediated Remodeling in Canine Gut Microbiota and Metabolites Using a Fermenter for an Intestinal Microbiota Model

  • Anna Kang;Min-Jin Kwak;Hye Jin Choi;Seon-hui Son;Sei-hyun Lim;Ju Young Eor;Minho Song;Min Kyu Kim;Jong Nam Kim;Jungwoo Yang;Minjee Lee;Minkyoung Kang;Sangnam Oh;Younghoon Kim
    • Food Science of Animal Resources
    • /
    • v.44 no.5
    • /
    • pp.1080-1095
    • /
    • 2024
  • In contemporary society, the increasing number of pet-owning households has significantly heightened interest in companion animal health, expanding the probiotics market aimed at enhancing pet well-being. Consequently, research into the gut microbiota of companion animals has gained momentum, however, ethical and societal challenges associated with experiments on intelligent and pain-sensitive animals necessitate alternative research methodologies to reduce reliance on live animal testing. To address this need, the Fermenter for Intestinal Microbiota Model (FIMM) is being investigated as an in vitro tool designed to replicate gastrointestinal conditions of living animals, offering a means to study gut microbiota while minimizing animal experimentation. The FIMM system explored interactions between intestinal microbiota and probiotics within a simulated gut environment. Two strains of commercial probiotic bacteria, Enterococcus faecium IDCC 2102 and Bifidobacterium lactis IDCC 4301, along with a newly isolated strain from domestic dogs, Lactobacillus acidophilus SLAM AK001, were introduced into the FIMM system with gut microbiota from a beagle model. Findings highlight the system's capacity to mirror and modulate the gut environment, evidenced by an increase in beneficial bacteria like Lactobacillus and Faecalibacterium and a decrease in the pathogen Clostridium. The study also verified the system's ability to facilitate accurate interactions between probiotics and commensal bacteria, demonstrated by the production of short-chain fatty acids and bacterial metabolites, including amino acids and gamma-aminobutyric acid precursors. Thus, the results advocate for FIMM as an in vitro system that authentically simulates the intestinal environment, presenting a viable alternative for examining gut microbiota and metabolites in companion animals.

Bioactive Molecules Produced by Probiotics to Control Enteric Pathogens (프로바이오틱스가 생산하는 생리활성 물질의 장내 유해균 억제 효과)

  • Lim, Kwang-Sei;Griffiths, Mansel W.;Park, Dong June;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.141-145
    • /
    • 2014
  • There is a burgeoning number of products on the market that contain probiotics, but do they do you any good? What exactly are probiotics? They have been defined as living organisms that, when ingested in sufficient quantities, provide health benefits beyond basic nutrition. They are often referred to as "friendly bacteria" or "good bacteria." Probiotics have been claimed, amongst other things, to (i) reduce the incidence of colon cancer and other diseases of the colon, such as IBS, (ii) stimulate the immune system, (iii) have anti-hypertensive and anti-cholesterolemic properties, (iv) mitigate against the effect of antibiotics on the intestinal microbiota, and (v) protect against gastrointestinal infections. However, the scientific basis for many of these claims is not well-established. Indeed, the European Food Safety Authority has denied the use of several health claims associated with probiotics, particularly those related to mitigation of diarrhea following consumption of antibiotics. Thus, there is a need for research on the mechanisms of action of probiotics. We have been mainly interested in the use of probiotics to control enteric infections. There are several possible modes of action to explain how probiotics may protect the host from enteric pathogens, including competitive exclusion and immunomodulation. We have shown that probiotics produce bioactive molecules that interfere with bacterial cell-cell communication (also called quorum sensing), and this results in a down-regulation of virulence genes that are responsible for attachment of the pathogen to the gastrointestinal epithelium. These bioactive molecules act on a variety of bacteria, including enterohemorrhagic and enterotoxigenic Escherichia coli, Salmonella, Clostridium difficile and Clostridium perfringens, and there is evidence that they can inhibit the formation of biofilms by Listeria monocytogenes. These bioactive molecules, which are peptidic in nature, can exert their effects not only in vitro but also in vivo, and we have shown that they mitigate against E. coli O157:H7 and Salmonella in mice and Salmonella and E. coli K88 infections in pigs. They can be delivered in foods such as yoghurt and maintain their activity.

  • PDF

Infection and Immune Response in the Nematode Caenorhabditis elegans Elicited by the Phytopathogen Xanthomonas

  • Bai, Yanli;Zhi, Dejuan;Li, Chanhe;Liu, Dongling;Zhang, Juan;Tian, Jing;Wang, Xin;Ren, Hui;Li, Hongyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1269-1279
    • /
    • 2014
  • Xanthomonas oryzae pv. oryzae (Xoo) strains are plant pathogenic bacteria that can cause serious blight of rice, and their virulence towards plant host is complex, making it difficult to be elucidated. Caenorhabditis elegans has been used as a powerful model organism to simplify the host and pathogen system. However, whether the C. elegans is feasible for studying plant pathogens such as Xoo has not been explored. In the present work, we report that Xoo strains PXO99 and JXOIII reduce the lifespan of worms not through acute toxicity, but in an infectious manner; pathogens proliferate and persist in the intestinal lumen to cause marked anterior intestine distension. In addition, Xoo triggers (i) the p38 MAPK signal pathway to upregulate its downstream C17H12.8 expression, and (ii) the DAF-2/DAF-16 pathway to upregulate its downstream gene expressions of mtl-1 and sod-3 under the condition of daf-2 mutation. Our findings suggest that C. elegans can be used as a model to evaluate the virulence of Xoo phytopathogens to host.

The Infection Characteristics of Vibrio scophthalmi Isolated from Olive Flounder, Paralichthys olivaceus (양식 넙치, Paralichthys olivaceus에서 분리한 Vibrio scophthalmi의 감염 특성)

  • Kim, Su Hyun;Woo, Sung Ho;Lee, So Jung;Park, Soo Il
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.207-217
    • /
    • 2013
  • Recently high mortality of cultured olive flounder, Paralichthys olivaceus occurred frequently at the fish farms in Ulsan, Korea. The diseased fish showed skinny body and swimming behavior around the water surface with liver atrophy and white enteritis as internal signs. The isolated bacteria were identified to V. scophthalmi by biochemical test, nucleotide analysis of 16S rRNA and dnaJ gene sequencing. The pathogen of this study showed strong pathogenicity as 75% mortality to olive flounder by intraperitoneal injection of $1{\times}10^6$ CFU/fish. The pathological sign was not different between the naturally diseased fish and the artificially infected fish. Histopathological changes were shown to liver atrophy, desquamation of the intestinal mucosa and hyaline droplet like as other previous studies.

Value of spray-dried egg in pig nursery diets

  • Song, Minho;Kim, Sheena;Kim, Younghwa;Park, Juncheol;Kim, Younghoon
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.207-213
    • /
    • 2015
  • High-quality protein ingredients have been used in nursery diets, in spite of expensive ingredients, to minimize nutritional deficiency and disease problems. Recent dramatic increases in prices of protein products for nursery diets have exacerbated the challenge. Spray-dried egg may be a part of the solutions. Therefore, this review describes the value of spray-dried egg in nursery diets as a high-quality protein source. Spray-dried egg is egg by-product and is produced by only eggs without shell that are below the USDA Grade B standards. Spray-dried egg is an excellent nutrient source: 1) highly digestible, 2) excellent balance of amino acids, 3) rich content of fat, and 4) high metabolizable energy. These can be attributed to growth of nursery pigs. Beyond the provision of bioavailable nutrients, spray-dried egg also may provide specific physiological benefits. Spray-dried egg contains 1) immunoglobulin antibodies (IgY: IgG in egg yolk) that may attach to intestinal pathogens and excrete them and 2) lysozymes antimicrobial protein that can damage bacteria cell wall. Thereby feeding spray-dried egg may reduce concentration of intestinal pathogen and thus improve potential gut health or enteric disease resistance in nursery pigs. This is important for physiologically immature weaned pigs. Based on these benefits, spray-dried egg is believed to have the same benefits as spray-dried plasma protein and milk products in diets for nursery pigs. Therefore, it is suggested that spray-dried egg has a great potential as a valuable protein source in nursery diets.