• Title/Summary/Keyword: Intestinal microbiota

Search Result 178, Processing Time 0.029 seconds

Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review

  • Melo, A.D.B.;Silveira, H.;Luciano, F.B.;Andrade, C.;Costa, L.B.;Rostagno, M.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs

  • Metzler, B.U.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.603-615
    • /
    • 2008
  • Dietary fiber is an inevitable component in pig diets. In non-ruminants, it may influence many physiological processes in the gastrointestinal tract (GIT) such as transit time as well as nutrient digestion and absorption. Moreover, dietary fiber is also the main substrate of intestinal bacteria. The bacterial community structure is largely susceptible to changes in the fiber content of a pig's diet. Indeed, bacterial composition in the lower GIT will adapt to the supply of high levels of dietary fiber by increased growth of bacteria with cellulolytic, pectinolytic and hemicellulolytic activities such as Ruminococcus spp., Bacteroides spp. and Clostridium spp. Furthermore, there is growing evidence for growth promotion of beneficial bacteria, such as lactobacilli and bifidobacteria, by certain types of dietary fiber in the small intestine of pigs. Studies in rats have shown that both phosphorus (P) and calcium (Ca) play an important role in the fermentative activity and growth of the intestinal microbiota. This can be attributed to the significance of P for the bacterial cell metabolism and to the buffering functions of Ca-phosphate in intestinal digesta. Moreover, under P deficient conditions, ruminal NDF degradation as well as VFA and bacterial ATP production are reduced. Similar studies in pigs are scarce but there is some evidence that dietary fiber may influence the ileal and fecal P digestibility as well as P disappearance in the large intestine, probably due to microbial P requirement for fermentation. On the other hand, fermentation of dietary fiber may improve the availability of minerals such as P and Ca which can be subsequently absorbed and/or utilized by the microbiota of the pig's large intestine.

Influence of spent ginger yeast cultures on the production performance, egg quality, serum composition, and intestinal microbiota of laying hens

  • Liu, Junhan;Jin, Yuhong;Yang, Junhua
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1205-1214
    • /
    • 2022
  • Objective: Spent ginger is a byproduct of juice extraction from the rhizome of ginger (Zingiber officinale). Despite its nutritional value, it is difficult to preserve or further process and thus is often wasted. This study uses spent ginger as a substrate for fermentation and cultivates spent ginger yeast cultures (SGYCs) that are then added to the feed of laying hens. The effects of SGYCs on production performance, egg quality, serum composition, and intestinal microbiota of laying hens were investigated. Methods: Eighty 60-week-old Hy-Line Brown hens were separated into 5 experimental groups with 4 replicates per group (4 hens per cage, 4 cages per replicate). The control group was fed a basal diet while experimental groups were also given SGYCs at the levels of 5, 10, 20, and 40 g/kg for 6 weeks. Results: The addition of SGYCs significantly increased the laying rate and nutrient digestibility, decreased feed conversion ratio, and enhanced the color of egg yolks (p<0.05). No changes were observed in activity levels of alanine aminotransferase and aspartate aminotransferase in the serum (p>0.05), but the activities of superoxide dismutase, glutathione peroxidase, and peroxidase all significantly increased, and contents of malondialdehyde were significantly reduced (p<0.05). In addition, changes in the relative abundance of Firmicutes and Bacteroidetes might be the main factor contributing to the significant increase in the apparent digestibility of crude protein and crude fat in laying hens (p<0.05). Conclusion: The current evidence shows that dietary supplementation of SGYCs to the feed of laying hens can improve laying rates, enhance antioxidative defenses, and influence dominant intestinal bacteria.

Serum Cholesterol-lowering Effect of Fermented Milk and Effect of Intestinal Microflora Composition on Function of Fermented Milk (발효유의 혈중 콜레스테롤 조절 기능과 발효유 기능성에 대한 장내 균총 구성의 영향)

  • Kim, Yujin;Yoon, Yohan;Lee, Soomin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • Fermented milk has been developed with its functionalities, and its health-promoting ability has been spotlighted due to its relationship with diseases such as cancer, cardiovascular disease, and diabetes, and gut microbiota. As national burden of cardiovascular disease increases over time, there is a need to prevent hypercholesterolemia. To achieve that, gut microbiota, which is altered by host's diet and environment, plays important roles in lowering cholesterol in the blood. Moreover, fermented milk may be effective as a cholesterol-lowering agent by altering gut microbiota composition. Gut microbiota may alter not only functions of the fermented milk but also bio-accessibility of functional materials. These results suggested that gut microbiota composition influences the impact of fermented milk. Thus, we should understand how functional materials are degraded by gut microbiota and absorbed into the gut.

Zerumbone Restores Gut Microbiota Composition in ETBF Colonized AOM/DSS Mice

  • Cho, Hye-Won;Rhee, Ki-Jong;Eom, Yong-Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1640-1650
    • /
    • 2020
  • Colorectal cancer (CRC) is the leading cause of common malignant neoplasm worldwide. Many studies have analyzed compositions of gut microbiota associated with various diseases such as inflammatory bowel diseases (IBD) and colon cancer. One of the most representative bacteria involved in CRC is enterotoxigenic Bacteroides fragilis (ETBF), a species belonging to phylum Bacteroidetes. We used ETBF colonized mice with azoxymethane (AOM)/dextran sulphate sodium (DSS) and zerumbone, a compound with anti-bacterial effect, to determine whether zerumbone could restore intestinal microbiota composition. Four experimental groups of mice were used: sham, ETBF colonized AOM/DSS group, ETBF colonized AOM/DSS group zerumbone 60 mg kg-1 (ETBF/AOM/DSS + Z (60)), and only zerumbone (60 mg kg-1)-treated group. We performed reversible dye terminators-based analysis of 16S rRNA gene region V3-V4 for group comparison. Microbiota compositions of ETBF/AOM/DSS + Z (60) group and ETBF colonized AOM/DSS group not given zerumbone were significantly different. There were more Bacteroides in ETBF/AOM/DSS + Z (60) group than those in ETBF colonized AOM/DSS group, suggesting that B. fragilis could be a normal flora activated by zerumbone. In addition, based on linear discriminant analysis of effect size (LEfSe) analysis, microbial diversity decreased significantly in the ETBF colonized AOM/DSS group. However, after given zerumbone, the taxonomic relative abundance was increased. These findings suggest that zerumbone not only influenced the microbial diversity and richness, but also could be helpful for enhancing the balance of gut microbial composition. In this work, we demonstrate that zerumbone could restore the composition of intestinal microbiota.

Personalized Diets based on the Gut Microbiome as a Target for Health Maintenance: from Current Evidence to Future Possibilities

  • Eun-Ji Song;Ji-Hee Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1497-1505
    • /
    • 2022
  • Recently, the concept of personalized nutrition has been developed, which states that food components do not always lead to the same metabolic responses, but vary from person to person. Although this concept has been studied based on individual genetic backgrounds, researchers have recently explored its potential role in the gut microbiome. The gut microbiota physiologically communicates with humans by forming a bidirectional relationship with the micronutrients, macronutrients, and phytochemicals consumed by the host. Furthermore, the gut microbiota can vary from person to person and can be easily shifted by diet. Therefore, several recent studies have reported the application of personalized nutrition to intestinal microflora. This review provides an overview of the interaction of diet with the gut microbiome and the latest evidence in understanding the inter-individual differences in dietary responsiveness according to individual baseline gut microbiota and microbiome-associated dietary intervention in diseases. The diversity of the gut microbiota and the presence of specific microorganisms can be attributed to physiological differences following dietary intervention. The difference in individual responsiveness based on the gut microbiota has the potential to become an important research approach for personalized nutrition and health management, although further well-designed large-scale studies are warranted.

Interaction between Dietary Factors and Gut Microbiota in Ulcerative Colitis (궤양성 대장염에서 식이 인자와 장 마이크로비오타의 상호작용)

  • Mi-Kyung Sung
    • Journal of Digestive Cancer Research
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • Ulcerative colitis (UC) exhibits chronic intestinal inflammatory conditions with cycles of relapse and remission. The incidence is rapidly growing in Asian countries including South Korea possibly due to changes in lifestyles. Although the etiology of inflammatory bowel disease is inconclusive, gut microbiota composition is considered a critical factor involved in the pathogenesis of UC. The overgrowth of pathogenic bacteria evokes hyper-immune responses in gut epithelium causing tissue inflammation and damage. Also, failure to regulate gut epithelium integrity due to chronic inflammation and mucus depletion accelerates bacterial translocation aggravating immune dysregulation. Gut microbiota composition responds to the diet in a very rapid manner. Epidemiological studies have indicated that the risk of UC is associated with low plant foods/high animal foods consumption. Several bacterial strains consistently found depleted in UC patients use plant food-originated dietary fiber producing short chain fatty acids to maintain epithelial integrity. These bacteria also use mucus layer mucin to keep gut microbiota diversity. These studies partly explain the association between dietary modification of gut microbiota in UC development. Further human intervention trials are required to allow the use of specific bacterial strains in the management of UC.

Microbial Colonization at Early Life Promotes the Development of Diet-Induced CD8αβ Intraepithelial T Cells

  • Jung, Jisun;Surh, Charles D.;Lee, You Jeong
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Intraepithelial lymphocytes (IELs) develop through the continuous interaction with intestinal antigens such as commensal microbiome and diet. However, their respective roles and mutual interactions in the development of IELs are largely unknown. Here, we showed that dietary antigens regulate the development of the majority of $CD8{\alpha}{\beta}$ IELs in the small intestine and the absence of commensal microbiota particularly during the weaning period, delay the development of IELs. When we tested specific dietary components, such as wheat or combined corn, soybean and yeast, they were dependent on commensal bacteria for the timely development of diet-induced $CD8{\alpha}{\beta}$ IELs. In addition, supplementation of intestinal antigens later in life was inefficient for the full induction of $CD8{\alpha}{\beta}$ IELs. Overall, our findings suggest that early exposure to commensal bacteria is important for the proper development of dietary antigen-dependent immune repertoire in the gut.

A PCR Denaturing Gradient Gel Electrophoresis (DGGE) Analysis of Intestinal Microbiota in Gastric Cancer Patients Taking Anticancer Agents (PCR-DGGE를 통해 분석한 항암치료에 따른 장내 미생물 변화)

  • Yu, Sun Nyoung;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1290-1298
    • /
    • 2017
  • Intestinal microbiota is an important factor in the development of immune defense mechanisms in the human body. Treatments with anticancer agents, such as 5-Fluorouracil, Cisplatin, and Oxaliplatin, significantly change the temporal stability and environment of intestinal bacterial flora. The anticancer treatment chemotherapy often depresses the immune system and induces side effects, such as diarrhea. This study investigated the effects anticancer agents have on the intestinal microbial ecosystems of patients with gastric cancer. An exploration of the diversity and temporal stability of the dominant bacteria was undertaken using a DGGE with the 16S rDNA gene. Researchers collected stool samples from patients zero, two and eight weeks after the patients started chemotherapy. After the treatment with anticancer agents, the bacteria strains Sphingomonas paucimobilis, Lactobacillus gasseri, Parabacteroides distasonis and Enterobacter sp. increased. This study focused on the survival of the beneficial microorganisms Bifidobacterium and Lactobacillus in the intestines of cancer patients. The administration of antigastric cancer agents significantly decreased Lactobacillus and Bifidobacterium populations and only moderately affected the main bacterial groups in the patients' intestinal ecosystems. The results showed the versatility of a cultivation independent-PCR DGGE analysis regarding the visual monitoring of ecological diversity and anticancer agent-induced changes in patients' complex intestinal microbial ecosystems.

Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs

  • Mun, Daye;Kyoung, Hyunjin;Kong, Myunghwan;Ryu, Sangdon;Jang, Ki Beom;Baek, Jangryeol;Park, Kyeong Il;Song, Minho;Kim, Younghoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1314-1327
    • /
    • 2021
  • Bacillus is characterized by the formation of spores in harsh environments, which makes it suitable for use as a probiotic for feed because of thermostability and high survival rate, even under long-term storage. This study was conducted to investigate the effects of Bacillus-based probiotics on growth performance, nutrient digestibility, intestinal morphology, immune response, and intestinal microbiota of weaned pigs. A total of 40 weaned pigs (7.01 ± 0.86 kg body weight [BW]; 28 d old) were randomly assigned to two treatments (4 pigs/pen; 5 replicates/treatment) in a randomized complete block design (block = BW and sex). The dietary treatment was either a typical nursery diet based on corn and soybean meal (CON) or CON supplemented with 0.01% probiotics containing a mixture of Bacillus subtilis and Bacillus licheniformis (PRO). Fecal samples were collected daily by rectal palpation for the last 3 days after a 4-day adaptation. Blood, ileal digesta, and intestinal tissue samples were collected from one pig in each pen at the respective time points. The PRO group did not affect the feed efficiency, but the average daily gain was significantly improved (p < 0.05). The PRO group showed a trend of improved crude protein digestibility (p < 0.10). The serum transforming growth factor-β1 level tended to be higher (p < 0.10) in the PRO group on days 7 and 14. There was no difference in phylum level of the intestinal microbiota, but there were differences in genus composition and proportions. However, β-diversity analysis showed no statistical differences between the CON and the PRO groups. Taken together, Bacillus-based probiotics had beneficial effects on the growth performance, immune system, and intestinal microbiota of weaned pigs, suggesting that Bacillus can be utilized as a functional probiotic for weaned pigs.