• 제목/요약/키워드: Interval prediction

검색결과 410건 처리시간 0.022초

HCBKA를 이용한 Interval Type-2 퍼지 논리시스템 기반 예측 시스템 설계 (Prediction System Design based on An Interval Type-2 Fuzzy Logic System using HCBKA)

  • 방영근;이철희
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.111-117
    • /
    • 2010
  • To improve the performance of the prediction system, the system should reflect well the uncertainty of nonlinear data. Thus, this paper presents multiple prediction systems based on Type-2 fuzzy sets. To construct each prediction system, an Interval Type-2 TSK Fuzzy Logic System and difference data were used, because, in general, it has been known that the Type-2 Fuzzy Logic System can deal with the uncertainty of nonlinear data better than the Type-1 Fuzzy Logic System, and the difference data can provide more steady information than that of original data. Also, to improve each rule base of the fuzzy prediction systems, the HCBKA (Hierarchical Correlation Based K-means clustering Algorithm) was applied because it can consider correlationship and statistical characteristics between data at a time. Subsequently, to alleviate complexity of the proposed prediction system, a system selection method was used. Finally, this paper analyzed and compared the performances between the Type-1 prediction system and the Interval Type-2 prediction system using simulations of three typical time series examples.

  • PDF

Interval prediction on the sum of binary random variables indexed by a graph

  • Park, Seongoh;Hahn, Kyu S.;Lim, Johan;Son, Won
    • Communications for Statistical Applications and Methods
    • /
    • 제26권3호
    • /
    • pp.261-272
    • /
    • 2019
  • In this paper, we propose a procedure to build a prediction interval of the sum of dependent binary random variables over a graph to account for the dependence among binary variables. Our main interest is to find a prediction interval of the weighted sum of dependent binary random variables indexed by a graph. This problem is motivated by the prediction problem of various elections including Korean National Assembly and US presidential election. Traditional and popular approaches to construct the prediction interval of the seats won by major parties are normal approximation by the CLT and Monte Carlo method by generating many independent Bernoulli random variables assuming that those binary random variables are independent and the success probabilities are known constants. However, in practice, the survey results (also the exit polls) on the election are random and hardly independent to each other. They are more often spatially correlated random variables. To take this into account, we suggest a spatial auto-regressive (AR) model for the surveyed success probabilities, and propose a residual based bootstrap procedure to construct the prediction interval of the sum of the binary outcomes. Finally, we apply the procedure to building the prediction intervals of the number of legislative seats won by each party from the exit poll data in the $19^{th}$ and $20^{th}$ Korea National Assembly elections.

Model-Free Interval Prediction in a Class of Time Series with Varying Coefficients

  • Park, Sang-Woo;Cho, Sin-Sup;Lee, Sang-Yeol;Hwang, Sun-Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제11권2호
    • /
    • pp.173-179
    • /
    • 2000
  • Interval prediction based on the empirical distribution function for the class of time series with time varying coefficients is discussed. To this end, strong mixing property of the model is shown and results due to Fotopoulos et. al.(1994) are employed. A simulation study is presented to assess the accuracy of the proposed interval predictor.

  • PDF

A Real-Time Integrated Hierarchical Temporal Memory Network for the Real-Time Continuous Multi-Interval Prediction of Data Streams

  • Kang, Hyun-Syug
    • Journal of Information Processing Systems
    • /
    • 제11권1호
    • /
    • pp.39-56
    • /
    • 2015
  • Continuous multi-interval prediction (CMIP) is used to continuously predict the trend of a data stream based on various intervals simultaneously. The continuous integrated hierarchical temporal memory (CIHTM) network performs well in CMIP. However, it is not suitable for CMIP in real-time mode, especially when the number of prediction intervals is increased. In this paper, we propose a real-time integrated hierarchical temporal memory (RIHTM) network by introducing a new type of node, which is called a Zeta1FirstSpecializedQueueNode (ZFSQNode), for the real-time continuous multi-interval prediction (RCMIP) of data streams. The ZFSQNode is constructed by using a specialized circular queue (sQUEUE) together with the modules of original hierarchical temporal memory (HTM) nodes. By using a simple structure and the easy operation characteristics of the sQUEUE, entire prediction operations are integrated in the ZFSQNode. In particular, we employed only one ZFSQNode in each level of the RIHTM network during the prediction stage to generate different intervals of prediction results. The RIHTM network efficiently reduces the response time. Our performance evaluation showed that the RIHTM was satisfied to continuously predict the trend of data streams with multi-intervals in the real-time mode.

On Predicting with Kernel Ridge Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권1호
    • /
    • pp.103-111
    • /
    • 2003
  • Kernel machines are used widely in real-world regression tasks. Kernel ridge regressions(KRR) and support vector machines(SVM) are typical kernel machines. Here, we focus on two types of KRR. One is inductive KRR. The other is transductive KRR. In this paper, we study how differently they work in the interpolation and extrapolation areas. Furthermore, we study prediction interval estimation method for KRR. This turns out to be a reliable and practical measure of prediction interval and is essential in real-world tasks.

  • PDF

이항자료에 대한 예측구간 (On Prediction Intervals for Binomial Data)

  • 류제복
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.943-952
    • /
    • 2013
  • 신뢰구간 추정에 널리 사용되고 있는 Wald, Agresti-Coull, 그리고 베이지안 방법인 Jeffrey와 Bayes-Laplace를 예측구간에 적용하였다. 네 가지 방법의 수치적 비교를 위해서 포함확률, 평균포함확률, 평균제곱오차의 제곱근, 그리고 평균기대폭을 사용하였다. 비교결과 Wald 방법은 신뢰구간에서와 마찬가지로 예측구간에서도 바람직하지 않았고 신뢰구간에서 선호되던 Agresti-Coull 방법은 예측구간에서는 너무 보수적이라 적절치 않다. 반면에 Jeffrey와 Bayes-Laplace 방법은 적절하였고, 특히 Jeffrey 방법은 신뢰구간의 경우에서와 마찬가지로 예측구간에서도 바람직하였다.

이항자료에 대한 예측구간 (On prediction intervals for binomial data)

  • 류제복
    • 응용통계연구
    • /
    • 제34권4호
    • /
    • pp.579-588
    • /
    • 2021
  • 신뢰구간 추정에 널리 사용되고 있는 Wald, Agresti-Coull, 그리고 베이지안 방법인 Jeffrey와 Bayes-Laplace를 예측구간에 적용하였다. 네 가지 방법의 수치적 비교를 위해서 포함확률, 평균포함확률, 평균제곱오차의 제곱근, 그리고 평균기대폭을 사용하였다. 비교결과 Wald 방법은 신뢰구간에서와 마찬가지로 예측구간에서도 바람직하지 않았고 신뢰구간에서 선호되던 Agresti-Coull 방법은 예측구간에서는 너무 보수적이라 적절치 않다. 반면에 Jeffrey와 Bayes-Laplace 방법은 적절하였고, 특히 Jeffrey 방법은 신뢰구간의 경우에서와 마찬가지로 예측구간에서도 바람직하였다.

Wind Power Interval Prediction Based on Improved PSO and BP Neural Network

  • Wang, Jidong;Fang, Kaijie;Pang, Wenjie;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.989-995
    • /
    • 2017
  • As is known to all that the output of wind power generation has a character of randomness and volatility because of the influence of natural environment conditions. At present, the research of wind power prediction mainly focuses on point forecasting, which can hardly describe its uncertainty, leading to the fact that its application in practice is low. In this paper, a wind power range prediction model based on the multiple output property of BP neural network is built, and the optimization criterion considering the information of predicted intervals is proposed. Then, improved Particle Swarm Optimization (PSO) algorithm is used to optimize the model. The simulation results of a practical example show that the proposed wind power range prediction model can effectively forecast the output power interval, and provide power grid dispatcher with decision.

경제위기시 환율신뢰구간 예측 알고리즘 개발 (Confidence interval forecast of exchange rate based on bootstrap method during economic crisis)

  • 김태윤;권오진
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권5호
    • /
    • pp.895-902
    • /
    • 2011
  • 본 연구는 경제위기시 환율의 신뢰구간 예측 알고리즘을 개발하는 것을 주된 목적으로 한다. 경제위기시 환율의 움직임의 특징은 평상시에 비해 변동성이 극도로 증가한다는 점이다. 본 연구에서는 이러한 변동성을 효율적으로 추정하기 위해 시계열 데이터의 변동성 추정에 유용한 것으로 알려진 블록 붓스트랩 기법을 사용하여 그 유용성을 보인다.

An iterative hybrid random-interval structural reliability analysis

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1061-1070
    • /
    • 2014
  • An iterative hybrid structural dynamic reliability prediction model has been developed under multiple-time interval loads with and without consideration of stochastic structural strength degradation. Firstly, multiple-time interval loads have been substituted by the equivalent interval load. The equivalent interval load and structural strength are assumed as random variables. For structural reliability problem with random and interval variables, the interval variables can be converted to uniformly distributed random variables. Secondly, structural reliability with interval and stochastic variables is computed iteratively using the first order second moment method according to the stress-strength interference theory. Finally, the proposed method is verified by three examples which show that the method is practicable, rational and gives accurate prediction.