• Title/Summary/Keyword: Interval models

Search Result 573, Processing Time 0.023 seconds

Analysis of Design Concept based on the Level of Consistency in Fashion Show Models' Physical Appearance - Focus on S/S Paris Collection 2014 - (패션쇼 모델의 외적 통일성 정도에 따른 디자인 컨셉 분석 - 2014년 S/S Paris Collection을 중심으로 -)

  • Lee, Shin-Young
    • Fashion & Textile Research Journal
    • /
    • v.17 no.5
    • /
    • pp.718-730
    • /
    • 2015
  • This study investigated the correlation between the level of consistency in fashion show models' appearance and design concept through a statistical and qualitative analysis of the S/S Paris Collection 2014. The following conclusions have been drawn in this study. First, the percentage of models of color was very low in regards to the physical appearance of models; in addition, there was a higher percentage of Caucasian models for collections with a high level of consistency in models' physical appearance. Collections with a high percentage of models of color indicate more casual design concepts and the promotion of diversity in racial background is considered more effective for street fashion. Second, collections with a high level of consistency in models' physical appearance tend to control various elements that constitute a physical appearance through more detailed planning and stage direction. Third, there is a tendency to reinforce design concepts by creating a consistency in the overall physical appearance of models. This affirms that their physical appearance is determined by brand (i.e. designer) and is used to maximize a design concept delivery. The results of this study suggests that the physical appearance of models must be determined in line with the design concept versus detailed planning that must consider audience perspectives as well as adjust the show's length and the interval between each model appearing on the stage.

Evaluation of the Uncertainties in Rainfall-Runoff Model Using Meta-Gaussian Approach (Meta-Gaussian 방법을 이용한 강우-유출 모형에서의 불확실성 산정)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.49-64
    • /
    • 2009
  • Rainfall-runoff models are used for efficient management, distribution, planning, and design of water resources in accordance with the process of hydrologic cycle. The models simplify the transition of rainfall to runoff as rainfall through different processes including evaporation, transpiration, interception, and infiltration. As the models simplify complex physical processes, gaps between the models and actual rainfall events exist. For more accurate simulation, appropriate models that suit analysis goals are selected and reliable long-term hydrological data are collected. However, uncertainty is inherent in models. It is therefore necessary to evaluate reliability of simulation results from models. A number of studies have evaluated uncertainty ingrained in rainfall-runoff models. In this paper, Meta-Gaussian method proposed by Montanari and Brath(2004) was used to assess uncertainty of simulation outputs from rainfall-runoff models. The model, which estimates upper and lower bounds of the confidence interval from probabilistic distribution of a model's error, can quantify global uncertainty of hydrological models. In this paper, Meta-Gaussian method was applied to analyze uncertainty of simulated runoff outputs from $Vflo^{TM}$, a physically-based distribution model and HEC-HMS model, a conceptual lumped model.

  • PDF

Development of a Runoff Forecasting Model Using Artificial Intelligence (인공지능기법을 이용한 홍수량 선행예측 모형의 개발)

  • Lim Kee-Seok;Heo Chang-Hwan
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.141-155
    • /
    • 2006
  • This study is aimed at the development of a runoff forecasting model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting, The study area is the downstream of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model. The model performance was improved as the measuring time interval$(T_m)$ was smaller than the sampling time interval$(T_s)$. The Neuro-Fuzzy(NF) and TANK models can give more accurate runoff forecasts up to 4 hours ahead than the Feed Forward Multilayer Neural Network(FFNN) model in standard above the Determination coefficient$(R^2)$ 0.7.

Statistical Analysis of Simulation Output Ratios (시뮬레이션 출력비 추정량의 통계적 분석)

  • 홍윤기
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.17-28
    • /
    • 1994
  • A statistical procedure is developed to estimate the relative difference between two parameters each obtained from either true model or approximate model. Double sample procedure is applied to find the additional number of simulation runs satisfying the preassigned absolute precision of the confidence interval. Two types of parameters, mean and standard deviation, are considered as the performance measures and tried to show the validity of the model by examining both queues and inventory systems. In each system it is assumed that there are three distinct means and their own standard deviations and they form the simultaneous confidence intervals but with control in the sense that the absolute precision for each confidence interval is bounded on the limits with preassigned confidence level. The results of this study may contribute to some situations, for instance, first, we need a statistical method to compare the effectiveness between two alternatives, second, we find the adquate number of replications with any level of absolute precision to avoid the unrealistic cost of running simulation models, third, we are interested in analyzing the standard deviation of the output measure, ..., etc.

  • PDF

Performance Study for Impact of Mobility Model and Position Update Interval in Geographic Routing

  • Dong, Lihua;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.489-495
    • /
    • 2009
  • Geographic routing has attracted many researcers with no need for routing table to forward packet in mobile ad hoc networks. Previously, some literatures have mentioned how to improve the performance via simulation results. However, they didn't address the impact of various mobility models and beacon interval, which is used to maintain recent position information for nodes. In this paper, we introduce well-known geographic routing protocol called as GPSR and conduct simulation to identify the impact of these parameters. Even though GPSR shows acceptable performance in most cases, sometimes its performance becomes worse than what we expect.

Analysis of Shielding Effect with Installation Methods of Arresters in Double Circuits Distribution Systems (2회선 배전계통에서 피뢰기 설치방법에 따른 차폐 효과 분석)

  • 정채균;김상국;이종범;정영호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.104-110
    • /
    • 2004
  • This paper describes the lightning overvoltage occurred differently according to installation methods of arresters and overhead grounding wire in case of double circuits distribution systems. First, the analysis models are established considering the severe case between upper and lower distribution line, when the direct lightning surge strikes to the overhead grounding wire. The lightning overvoltage is variously analyzed with the change of grounding interval and resistance, arrester installation interval as well as the magnitude of surge using EMTP. After simulation results are compared with the BIL which is now used at field, the authors propose the methods for suitable shielding in domestic distribution systems.

Effective Computation for Odds Ratio Estimation in Nonparametric Logistic Regression

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.713-722
    • /
    • 2009
  • The estimation of odds ratio and corresponding confidence intervals for case-control data have been done by traditional generalized linear models which assumed that the logarithm of odds ratio is linearly related to risk factors. We adapt a lower-dimensional approximation of Gu and Kim (2002) to provide a faster computation in nonparametric method for the estimation of odds ratio by allowing flexibility of the estimating function and its Bayesian confidence interval under the Bayes model for the lower-dimensional approximations. Simulation studies showed that taking larger samples with the lower-dimensional approximations help to improve the smoothing spline estimates of odds ratio in this settings. The proposed method can be used to analyze case-control data in medical studies.

A two-parameter discrete distribution with a bathtub hazard shape

  • Sarhan, Ammar M.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.15-27
    • /
    • 2017
  • This paper introduces a two-parameter discrete distribution based on a continuous two-parameter bathtub distribution. It is the only two-parameter discrete distribution that shows a bathtub-shaped hazard function. Some statistical properties of the distribution are discussed. Three different methods are used to estimate its two unknown parameters. The point estimators of the parameters have no closed form. The bootstrap method is used to estimate the distributions of these point estimators. Different approximations of the interval estimations for the two-parameters are discussed. Real data sets are analyzed to show how this distribution works in practice. A simulation study is performed to investigate the properties of the estimations obtained and compare their performances.

Free Vibration Analysis of Axisymmetric Conical Shell

  • Choi, Myung-Soo;Yeo, Dong-Jun;Kondou, Takahiro
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.5-16
    • /
    • 2016
  • Generally, methods using transfer techniques, like the transfer matrix method and the transfer stiffness coefficient method, find natural frequencies using the sign change of frequency determinants in searching frequency region. However, these methods may omit some natural frequencies when the initial frequency interval is large. The Sylvester-transfer stiffness coefficient method ("S-TSCM") can always obtain all natural frequencies in the searching frequency region even though the initial frequency interval is large. Because the S-TSCM obtain natural frequencies using the number of natural frequencies existing under a searching frequency. In this paper, the algorithm for the free vibration analysis of axisymmetric conical shells was formulated with S-TSCM. The effectiveness of S-TSCM was verified by comparing numerical results of S-TSCM with those of other methods when analyzing free vibration in two computational models: a truncated conical shell and a complete (not truncated) conical shell.

Transformation of UML Diagrams into Interval Temporal Logic and Petri nets for Real-Time Systems Design

  • Gushiken, Ryuji;Nakamura, Morikazu;Kono, Shinji;Onaga, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.653-656
    • /
    • 2000
  • We consider, in this paper, a UML-based design support system for real-time systems. However, the UML does not include any notion for verification of timing constraints. We presents transformation algorithms, as a function of the support system, of UML descriptions into Petri nets and Interval Temporal Logic models, which are very powerful for the verification. This paper shows also transformation example for simple elevator system.

  • PDF