• Title/Summary/Keyword: Interval models

Search Result 581, Processing Time 0.029 seconds

A Robust Background Subtraction Algorithm for Dynamic Scenes based on Multiple Interval Pixel Sampling (다중 구간 샘플링에 기반한 동적 배경 영상에 강건한 배경 제거 알고리즘)

  • Lee, Haeng-Ki;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.31-36
    • /
    • 2020
  • Most of the background subtraction algorithms show good performance in static scenes. In the case of dynamic scenes, they frequently cause false alarm to "temporal clutter", a repetitive motion within a certain area. In this paper, we propose a robust technique for the multiple interval pixel sampling (MIS) algorithm to handle highly dynamic scenes. An adaptive threshold scheme is used to suppress false alarms in low-confidence regions. We also utilize multiple background models in the foreground segmentation process to handle repetitive background movements. Experimental results revealed that our approach works well in handling various temporal clutters.

Analysis of recurrent event data with incomplete observation gaps using piecewise models

  • Kim, Yang-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1117-1125
    • /
    • 2014
  • In a longitudinal study, subjects can experience same type of events repeatedly. Also, there may exist intermittent dropouts resulting in repeated observation gaps during which no recurrent events are observed. Furthermore, when such observation gaps have incomplete forms caused by the unknown termination times of observation gaps, ordinary approaches result in biased estimates. In this study, we investigate the effect of ignoring observation gaps and propose methods to overcome this problem. For estimating the distribution of unknown termination times, an interval-censored mechanism is applied and two cases are considered. Simulation studies are carried out to evaluate the performance of the proposed method. Conviction data of young drivers with several suspensions are analyzed to illustrate the suggested approach.

Construction of a Design Curve for Fatigue Model Using Bootstrap Method (붓스트랩방법을 이용한 피로모형의 설계곡선 설정)

  • 서순근;조유희
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.4
    • /
    • pp.106-119
    • /
    • 2002
  • The fatigue curve with estimated parameters represents the estimate of the median or mean life at a given applied stress But, in order to assist a designer in making decisions regarding the fatigue failure mode, it is common practice to construct a design curve on the lower or safe side of data. In this study, to overcome the limitations(i.e., no runout, equal variance, and quality of the approximation, etc) of Shen, Wirsching, and Cashman's method which suggested the approximate design curve for nonlinear models using tolerance interval constructed by Owen's method, an algorithm to find design curves under the fatigue model using a parametric bootstrap method, is proposed and illustrated with multiple fatigue data sets.

Effects of ILFs on DRAM algorithm in SURR model uncertainty evaluation caused by interpolated rainfall using different methods

  • Nguyen, Thi Duyen;Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.137-137
    • /
    • 2022
  • Evaluating interpolated rainfall uncertainty of hydrological models caused by different interpolation methods for basins where can not fully collect rainfall data are necessary. In this study, the adaptive MCMC method under effects of ILFs was used to analyze the interpolated rainfall uncertainty of the SURR model for Gunnam basin, Korea. Three events were used to calibrate and one event was used to validate the posterior distributions of unknown parameters. In this work, the performance of four ILFs on uncertainty of interpolated rainfall was assessed. The indicators of p_factor (percentage of observed streamflow included in the uncertainty interval) and r_factor (the average width of the uncertainty interval) were used to evaluate the uncertainty of the simulated streamflow. The results showed that the uncertainty bounds illustrated the slight differences from various ILFs. The study confirmed the importance of the likelihood function selection in the application the adaptive Bayesian MCMC method to the uncertainty assessment of the SURR model caused by interpolated rainfall.

  • PDF

VALIDATION OF ON-LINE MONITORING TECHNIQUES TO NUCLEAR PLANT DATA

  • Garvey, Jamie;Garvey, Dustin;Seibert, Rebecca;Hines, J. Wesley
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.133-142
    • /
    • 2007
  • The Electric Power Research Institute (EPRI) demonstrated a method for monitoring the performance of instrument channels in Topical Report (TR) 104965, 'On-Line Monitoring of Instrument Channel Performance.' This paper presents the results of several models originally developed by EPRI to monitor three nuclear plant sensor sets: Pressurizer Level, Reactor Protection System (RPS) Loop A, and Reactor Coolant System (RCS) Loop A Steam Generator (SG) Level. The sensor sets investigated include one redundant sensor model and two non-redundant sensor models. Each model employs an Auto-Associative Kernel Regression (AAKR) model architecture to predict correct sensor behavior. Performance of each of the developed models is evaluated using four metrics: accuracy, auto-sensitivity, cross-sensitivity, and newly developed Error Uncertainty Limit Monitoring (EULM) detectability. The uncertainty estimate for each model is also calculated through two methods: analytic formulas and Monte Carlo estimation. The uncertainty estimates are verified by calculating confidence interval coverages to assure that 95% of the measured data fall within the confidence intervals. The model performance evaluation identified the Pressurizer Level model as acceptable for on-line monitoring (OLM) implementation. The other two models, RPS Loop A and RCS Loop A SG Level, highlight two common problems that occur in model development and evaluation, namely faulty data and poor signal selection

Development of Analytical Tools for the Bullwhip Effect Control in Supply Chains : Quantitative Models and Decision Support System (공급사슬에서 채찍효과 관리를 위한 분석도구의 개발 : 정량화 모형과 의사결정지원시스템)

  • Shim, Kyu-Tak;Park, Yang-Byung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.117-129
    • /
    • 2009
  • The bullwhip effect is known as the significant factor which causes unnecessary inventory, lost sales or cost increase in supply chains. Therefore, the causes of the bullwhip effect must be examined and removed. In this paper, we develop two analytical tools for the bullwhip effect control in supply chains. First, we develop the quantitative models for computing the bullwhip effect in a three-stage supply chain consisted of a single retailer, a single distributor and a single manufacturer when the fixed-interval replenishment policy is applied at each stage. The quantitative models are developed under the different conditions for the demand forecasting and share of customer demand information. They are validated through the computational experiments. Second, we develop a simulation-based decision support system for the bullwhip effect control in a more diverse dynamic supply chain environment. The system includes a what-if analysis function to examine the effects of varying input parameters such as operating policies and costs on the bullwhip effect.

A prediction model of low back pain risk: a population based cohort study in Korea

  • Mukasa, David;Sung, Joohon
    • The Korean Journal of Pain
    • /
    • v.33 no.2
    • /
    • pp.153-165
    • /
    • 2020
  • Background: Well-validated risk prediction models help to identify individuals at high risk of diseases and suggest preventive measures. A recent systematic review reported lack of validated prediction models for low back pain (LBP). We aimed to develop prediction models to estimate the 8-year risk of developing LBP and its recurrence. Methods: A population based prospective cohort study using data from 435,968 participants in the National Health Insurance Service-National Sample Cohort enrolled from 2002 to 2010. We used Cox proportional hazards models. Results: During median follow-up period of 8.4 years, there were 143,396 (32.9%) first onset LBP cases. The prediction model of first onset consisted of age, sex, income grade, alcohol consumption, physical exercise, body mass index (BMI), total cholesterol, blood pressure, and medical history of diseases. The model of 5-year recurrence risk was comprised of age, sex, income grade, BMI, length of prescription, and medical history of diseases. The Harrell's C-statistic was 0.812 (95% confidence interval [CI], 0.804-0.820) and 0.916 (95% CI, 0.907-0.924) in validation cohorts of LBP onset and recurrence models, respectively. Age, disc degeneration, and sex conferred the highest risk points for onset, whereas age, spondylolisthesis, and disc degeneration conferred the highest risk for recurrence. Conclusions: LBP risk prediction models and simplified risk scores have been developed and validated using data from general medical practice. This study also offers an opportunity for external validation and updating of the models by incorporating other risk predictors in other settings, especially in this era of precision medicine.

Prediction of the remaining time and time interval of pebbles in pebble bed HTGRs aided by CNN via DEM datasets

  • Mengqi Wu;Xu Liu;Nan Gui;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang;Qian Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.339-352
    • /
    • 2023
  • Prediction of the time-related traits of pebble flow inside pebble-bed HTGRs is of great significance for reactor operation and design. In this work, an image-driven approach with the aid of a convolutional neural network (CNN) is proposed to predict the remaining time of initially loaded pebbles and the time interval of paired flow images of the pebble bed. Two types of strategies are put forward: one is adding FC layers to the classic classification CNN models and using regression training, and the other is CNN-based deep expectation (DEX) by regarding the time prediction as a deep classification task followed by softmax expected value refinements. The current dataset is obtained from the discrete element method (DEM) simulations. Results show that the CNN-aided models generally make satisfactory predictions on the remaining time with the determination coefficient larger than 0.99. Among these models, the VGG19+DEX performs the best and its CumScore (proportion of test set with prediction error within 0.5s) can reach 0.939. Besides, the remaining time of additional test sets and new cases can also be well predicted, indicating good generalization ability of the model. In the task of predicting the time interval of image pairs, the VGG19+DEX model has also generated satisfactory results. Particularly, the trained model, with promising generalization ability, has demonstrated great potential in accurately and instantaneously predicting the traits of interest, without the need for additional computational intensive DEM simulations. Nevertheless, the issues of data diversity and model optimization need to be improved to achieve the full potential of the CNN-aided prediction tool.

Genetic parameters of milk and lactation curve traits of dairy cattle from research farms in Thailand

  • Pangmao, Santi;Thomson, Peter C.;Khatkar, Mehar S.
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1499-1511
    • /
    • 2022
  • Objective: This study was aimed to estimate the genetic parameters, including genetic and phenotypic correlations, of milk yield, lactation curve traits and milk composition of Thai dairy cattle from three government research farms. Methods: The data of 25,789 test-day milk yield and milk composition records of 1,468 cattle from lactation 1 to 3 of Holstein Friesian (HF) and crossbred HF dairy cattle calved between 1990 and 2015 from three government research farms in Thailand were analysed. 305-day milk yield was estimated by the Wood model and a test interval method. The Wood model was used for estimating cumulative 305-day milk yield, peak milk yield, days to peak milk yield and persistency. Genetic parameters were estimated using linear mixed models with herd, breed group, year and season of calving as fixed effects, and animals linked to a pedigree as random effects, together with a residual error. Univariate models were used to estimate variance components, heritability, estimated breeding values (EBVs) and repeatability of each trait, while pairwise bivariate models were used to estimate covariance components and correlations between traits in the same lactation and in the same trait across lactations. Results: The heritability of 305-day milk yield, peak milk yield and protein percentage have moderate to high estimates ranging from 0.19 to 0.45 while days to peak milk yield, persistency and fat percentage have low heritability ranging from 0.08 to 0.14 in lactation 1 cows. Further, heritability of most traits considered was higher in lactation 1 compared with lactations 2 and 3. For cows in lactation 1, high genetic correlations were found between 305-day milk yield and peak milk yield (0.86±0.07) and days to peak milk yield and persistency (0.99±0.02) while estimates of genetic correlations between the remaining traits were imprecise due to the high standard errors. The genetic correlations within the traits across lactation were high. There was no consistent trend of EBVs for most traits in the first lactation over the study period. Conclusion: Both the Wood model and test interval method can be used for milk yield estimates in these herds. However, the Wood model has advantages over the test interval method as it can be fitted using fewer test-day records and the estimated model parameters can be used to derive estimates of other lactation curve parameters. Milk yield, peak milk yield and protein percentage can be improved by a selection and mating program while days to peak milk yield, persistency and fat percentage can be improved by including into a selection index.

Three-Dimensional Computational Modeling of Scour around Pile Groups (군말뚝 주변의 세굴 3차원 수치모의)

  • Kim, Hyung Suk;Park, Moonhyeong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.907-919
    • /
    • 2014
  • This study presents scour processes and its characteristics around the pile groups using the large eddy simulation (LES) coupled with sediment transport and morphodynamic models. The scour and deposition around pile groups were significantly influenced by the pile interval. In case the non-dimensional pile interval was less than 3.75, the local scours as well as the contraction scour were observed around the pile group. On the other hand, in case the non-dimensional pile interval was more than 3.75, the contraction scour disappeared and only local scours were developed at individual piles. Change in the scour depth at piles located in the upstream was similar with the case of single pile, but the scour depth around piles located in the downstream was lower and showed a significantly different tendency due to the presence of piles in the upstream. The non-dimensional maximum scour depth around the pile group decreased as the pile interval increased.