• Title/Summary/Keyword: Intertidal flat

Search Result 139, Processing Time 0.02 seconds

The diverse species of the genus Hantzschia (Bacillariophyta) in sand flats of the Nakdong River estuary in Korea

  • Joh, Gyeongje
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.245-255
    • /
    • 2014
  • To collect the diatom species belonging to the genus Hantzschia, bottom sediments were collected from 32 sampling sites in 23 sand-flat areas in the intertidal zone and river reaches of Nakdong River estuary, Korea. The sand sediments contained a total of 19 species of genus Hantzschia, Hantzschia amphioxys (Ehrenberg) Grunow, H. amphioxys f. capitata O. Muller, H. baltica Simonsen, H. distinctepunctata (Hustedt) Hustedt, H. elegantula (Østrup) Witkowski et al., H. longiareolata Garcia-Baptista, H. marina (Donkin) Grunow, H. pseudomarina Hustedt, H. virgata (Roper) Grunow, H. virgata var. gracilis Hustedt, H. virgata var. kariana Grunow, H. virgata var. leptocephala Østrup and H. weyprechtii Grunow, including six unconfirmed species. Eleven Hantzschia species are reported as new to Korea. Hantzschia virgata, its infraspecies, and neighboring speceis showed large morphological variations within a single species or among the closely related species. Hantzschia amphioxys, H. distinctepunctata, and H. virgata var. leptocephala prefer freshwater habitats in the upper reaches of the river, while others occurred mainly in the sand flats composed of coarse sand in the intertidal area. In the estuarine sediments, the Hantzschia taxa are classified to be typical sand-attached forms.

First report of Amphidinium fijiense(Dinophyceae) from the intertidal zone of a sandy beach of Jeju Island, Korea

  • Su-Min Kang;Taehee Kim;Joon-Baek Lee;Jang-Seu Ki;Jin Ho Kim
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.497-509
    • /
    • 2022
  • A strain of Amphidinium species was established from samples collected from the intertidal zone of a sandy beach of Jeju Island, Korea. Its cells were 13.0-15.0 ㎛ in length and 10.0-13.0 ㎛ in width. Its cell shape was round or oval and dorsoventrally flat. A pyrenoid was located in the center of the cell and a nucleus was posteriorly located. Its epicone was small and left-deflecting. Its cingulum had V-shape on the ventral side, forming a ventral ridge and extending to the sulcus. Polygonal amphiesmal vesicles and ring-shaped body scales not described previous were observed on the surface of the cell. Its morphological features were consistent with those of previously described Amphidinium fijiense. Phylogeny based on ITS region and LSU rDNA sequences revealed that this Amphidinium isolate was clearly clustered with other A. fijiense strains, but separated from other Amphidinium species. These results indicate that this Amphidinium isolate is A. fijiense. This study reports its presence for the first time in the intertidal zone of a sandy beach of Jeju Island, Korea.

Seasonal Variation and Preservation Potential of Tidal-Flat Sediments on the Tidal Flat of Gomso Bay, West Coast of Korea

  • Chang, Jin-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.19-22
    • /
    • 2004
  • Seasonal changes of topograpy, sediment grain size and accumulation rate on the Gomso-Bay tidal flat(Fig. 1), west coast of Korea, have studied in order to understand the seasonal accumulation pattern and preservation potential of tidal-flat sediments. Seasonal levelings across the tidal flat show that the landward movement of both intertidal sand shoals and cheiers accelerates during the winter and typhoon period, but it almost stops in summer when mud deposition is instead predominant on the middle to upper tidal flat. Seasonal variations of mean grain size were largest on the upper part of middle tidal flat where summer mud layers were eroded during the winter and typhoon periods(Fig. 2). Measurements of accululation depths from sea floor to basal plate reveal that accumulation rates were seasonally controlled according to the elevation of tidal-flat surface(Table 1) : the upper flat, where the accumulation rate of summer was generally higher than that of winter, was characterized by a continuous deposition throughout the entire year, whereas on the middle flat, sediment accumulations were concentrated in winter realtive to summer, and were intermittently eroded by typhoons. The lower tidal flat were deposited mostly in winter and eroded during summer typhoons. Cancores taken across the tidal flat reveal that sand-mud interlaers resulting from such seasonal changes of energy regime are preserved only in the upper part of the deposits and generally replaced by storm layers downcore(Fig. 3). Based on above results, it is suggested that the storm deposits formed by winter stors and typhoons would consist of the major part of the Gomso-Bay deposits(Fig. 4).

  • PDF

Detection of Microphytobenthos in the Saemangeum Tidal Flat by Linear Spectral Unmixing Method

  • Lee Yoon-Kyung;Ryu Joo-Hyung;Won Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.405-415
    • /
    • 2005
  • It is difficult to classify tidal flat surface that is composed of a mixture of mud, sand, water and microphytobenthos. We used a Linear Spectral Unmixing (LSU) method for effectively classifying the tidal flat surface characteristics within a pixel. This study aims at 1) detecting algal mat using LSU in the Saemangeum tidal flats, 2) determining a suitable end-member selection method in tidal flats, and 3) find out a habitual characteristics of algal mat. Two types of end-member were built; one is a reference end-member derived from field spectrometer measurements and the other image end-member. A field spectrometer was used to measure spectral reflectance, and a spectral library was accomplished by shape difference of spectra, r.m.s. difference of spectra, continuum removal and Mann-Whitney U-test. Reference end-members were extracted from the spectral library. Image end-members were obtained by applying Principle Component Analysis (PCA) to an image. The LSU method was effective to detect microphytobenthos, and successfully classified the intertidal zone into algal mat, sediment, and water body components. The reference end-member was slightly more effective than the image end-member for the classification. Fine grained upper tidal flat is generally considered as a rich habitat for algal mat. We also identified unusual microphytobenthos that inhabited coarse grained lower tidal flats.

Tidal-Flat Sedimentation in a Semienclosed Bay with Erosional Shorelines: Hampyong Bay, West Coast of Korea (해안침식이 우세한 반폐쇄적 조간대의 퇴적작용: 한국 서해안의 함평만)

  • Chang, Jin-Ho;Kim, Yeo-Sang;Cho, Yeong-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.117-126
    • /
    • 1999
  • Hampyong Bay is a semienclosed and macrotidal bay which opens to the eastern Yellow Sea through a narrow inlet in the southwestern coast of Korea. In order to understand the tidal-flat sedimentation in the semienclosed setting, morphology, sediments, accumulation rate and sea cliff erosion were investigated in the tidal flat of Hampyong Bay. The tidal flat of Hampyong Bay lacks intertidal drainage systems, and generally shows the concave-upward profile whose relief is designated by marked morphological features such as high-tide beaches, intertidal sand shoals and tidal creeks. Surfacial sediments of the tidal flat mainly consist of mud, sandy mud, gravelly mud, gravelly sand and muddy gravel, thus showing the textural characteristics of multimodal grain-size distribution, poorly sorting and positive skewness. The sediments generally coarsen landward due to the increase in coarse fraction content. Sedimentary structures are deeply bioturbated, but parallel lamination and lenticular bedding are locally found in the mudflat near mean low water line. Annual accumulation rates across the tidal flat (along Line SM) average -5.2 cm/yr with a range of -45.8~+4.2 cm/yr, indicating that the tidal flat is erosional. In general, erosion rates of upper and lower tidal flat are higher than those of middle tidal flat. Seasonally, the erosion rates are much higher during spring and winter when dominant wind direction corresponds to the long axis of Hampyong Bay. Sea cliffs are eroded at a rate of 1.4 m/yr. The biggest sea cliff erosion generally occurs 1~2 months later after tidal flats were extensively eroded. Such erosions of tidal Oats and sea cliffs in the semienclosed bay setting are interpreted to be due to wind waves coupled with local sea-level rise.

  • PDF

Distributions of Organic Matter and Trace Metals in Sediment around a Tidal-flat Oyster Crassostrea gigas Farming Area on the Taean Peninsula, Korea (태안반도 갯벌 참굴(Crassostrea gigas) 양식장 주변 퇴적물의 유기물 및 미량금속 분포)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.1014-1025
    • /
    • 2014
  • We measured the concentrations of various geochemical parameters [grain size, ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Fe, Cu, Cd, Pb, Cr, Mn, As, Zn, and Hg)] in the surface sediments of two intertidal oyster Crassostrea gigas farming areas (Iwon and Mongsan tidal flats) on the Taean Peninsula, Korea, to evaluate the pollution level of organic matter and trace metals in sediment. The intertidal sediments in the study region comprise mostly sand with a mean grain size of 2.5-3.5 Ø. The concentrations of IL, COD, AVS, and trace metals in the sediment of two study regions were either similar or lower in oyster farming areas relative to non-farming areas, apparently due to biological uptake or physical and biological sediment reworking. Based on the results for the pollution evaluation of organic matter and trace metals derived from sediment quality guidelines, enrichment factor, and geoaccumulation index, our results suggest that the sediment in these two intertidal oyster farming regions is not polluted by organic matter and trace metals.

Penicillium Diversity from Intertidal Zone in Korea

  • Park, Myung Soo;Lee, Seobihn;Oh, Seung-Yoon;Lim, Young Woon
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.11-11
    • /
    • 2016
  • Penicillium species are commonly isolated from various outdoor and indoor environments, including marine environments such as sponges, algae and sand. Penicillium is especially important because numerous bioactive compounds have been isolated. Penicillium was the most common species in intertidal zone in Korea, however the diversity and ecological roles of Penicillium in intertidal zone are not clarified. We explored diversity and ecological roles of marine-derived Penicillium from tidal flat and sea sand in Korea. The diversity of marine-derived Penicillium from Korea was investigated using both culture-dependent and culture-independent approach by ${\beta}$-tubulin sequence. In addition, we evaluated optimal temperature, halo-tolerance, and enzyme activity of Penicillium strains, such as extracellular alginase, endoglucanase, ${\beta}$-glucosidase, and protease. For culture-dependent approach, a total of 182 strains of 62 Penicillium species were isolated, with 53 species being identified. The most common species was Penicillium oxalicum, followed by P. crustosum, P. brasilianum, P. koreense, and P. griseofulvum. Species richness and composition were not significantly different by season, substrates, and seaside. For culture-independent approach using Illumina sequencing, 73 OTUSs were detected. The most frequently observed species was P. antarcticum, followed by P. koreense, P. crustosum, and P. brevicompactum. Diversity of Penicillium was higher during winter season than during summer season and in western sea than in southern sea, respectively. Community structure was significantly different by season and sea side. 52 species were detected by both methods. Unique species were isolated from each of methods - 10 from culture methods and 21 from Illumina sequencing. Furthermore, salinity adaption of the Penicillium varied depending on species. Many Penicillium species showed endoglucanase, ${\beta}$-glucosidase, and protease activity. Some species including P. paneum and P. javanicum degraded the polycyclic aromatic hydrocarbons. Thus, our results demonstrate that intertidal zone in Korea harbors diverse Penicillium community and marine-derived Penicillium play important ecological roles as decomposers of organic material in marine environments.

  • PDF

The Changing Process of the Tidal Landforms in Hampyeung Bay, Southwest Korea (함평만의 간석지 해안지형의 변화)

  • KIM, Nam-Shin;LEE, Min-Boo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.223-233
    • /
    • 2011
  • The aims of this study is about distribution characteristics of tidal coastal landforms, and that changing process in the Hampyeung Bay, which has a semi-enclosed bay like basin shape without inflow of stream, the mouth of open sea is narrow and forms with wide ends toward inland sea. The source of deposits are moved materials by tidal currents and from coastal slopes. Main landform elements of study area consist of tidal flat, tidal channels, intertidal sand bar, sea cliffs, and sea terrace. Tidal flats is classified with mud flat and mixed flat by grain size composition. Mud flats have developed at the shoreline area that tidal flat is closed to the continuity of gentle slope, and mixed flat developed at the foot of the sea cliffs and sea terraces. Quaternary deposits were identified in the coastal materials sedimented by the sea-level change. According to the analysis of grain size composition during last ten years, sands and silt has increased 2% and 6% respectively, clay has been decreased by 9%. The concaved tidal flats are colonized by salt plants. Areal changes of salt plants expanded near four times from 2.4km2 at the year 2001 to 9.3km2 at the year 2009. During the same periods, mean grain size became coarser from 6.5φ to 4.5φ at the salt plants area.

Rates of Anaerobic Carbon Mineralization and Sulfate Reduction in Association with Bioturbation in the Intertidal Mudflat of Ganghwa, Korea (강화도 남단 갯벌의 혐기성 유기물 분해능과 황산염 환원력 및 저서 동물이 이에 미치는 잠재적 영향)

  • Mok, Jin-Sook;Cho, Hye-Youn;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 2005
  • This study was carried out to quantify the rates of anaerobic mineralization and sulfate reduction, and to discuss the potential effects of benthic fauna on sulfate reduction in total anaerobic carbon respiration in Ganghwa intertidal flat in Korea. Anaerobic carbon mineralization rates ranged from 26 to 85 mmol $C\;m^{-2}\;d^{-1}$, which accounted for approximately 46 tons of daily organic matter mineralization in the intertidal flat of southern part of the Ganghwa Island (approximately $90\;km^2$). Sulfate reduction ranged from 22.6 to 533.4 nmol $cm^{-3}\;d^{-1}$, and were responsible for $31{\sim}129%$ of total anaerobic carbon oxidation, which indicated that sulfate reduction was a dominant pathway for anaerobic carbon oxidation in the study area. On the other hand, the partitioning of sulfate reduction in anaerobic carbon mineralization in October decreased, whereas concentrations of Fe(II) in the pore water increased. The results implied that the re-oxidation of Fe(II) in the sediments is stimulated by macrobenthic activity, leading to an increased supply of reactive Fe(II), and thereby increasing Fe(III) reduction to depress sulfate reduction during carbon oxidation.

Ecological Importance of Benthic Microalgae in the Intertidal Mud Flat of Yeongheung Island; Application of Stable Isotope Analysis (SIA) (영흥도 조간대 갯벌 저서미세조류의 생태적 중요성; 안정동위원소 분석 활용)

  • Kang, Sujin;Choi, Bohyung;Han, Yongjin;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.80-88
    • /
    • 2016
  • In order to reconstruct a benthic foodweb structure and assess the role of benthic microalgaes as a diet source for benthos, we analyzed the carbon and nitrogen stable isotopes of diverse benthos (bivalves, crustaceans, gastropods and fishes) and potential diets (particulate organic matter, sedimentary organic matter, benthic microalgae, seagrass, and macroalgaes) in the intertidal mudflat surrounding Yeongheung Island. The ${\delta}^{13}C$ values of the diets indicated wide ranges (- 26.5‰ to - 8.4‰) while benthos showed a small range of ${\delta}^{13}C$ values (-12.1‰ to - 17.8‰), although they were in the same range. Except for green algaes among the macroalgaes as well as sedimentary organic matter, ${\delta}^{15}N$ values of the diet candidates ($5.7{\pm}1.0$‰) were lighter in comparison to those of the benthos ($11.8{\pm}1.9$‰). Based on the ${\delta}^{13}C$ and ${\delta}^{15}N$ data, the benthos were classified into 3 groups, indicating a different diet and trophic position. But benthic microalgae is the most important diet source for all three benthos groups based on their stable isotope ratios, suggesting benthic microalgae should be a main diet to the intertidal ecosystem. Hence this study highlights that the biomass of benthic microalgae as biological resource should be evaluated for the management of the intertidal ecosystem of Yeongheung Island.