• Title/Summary/Keyword: Interstitials and vacancies

Search Result 17, Processing Time 0.019 seconds

Synthesis and Characterization of a Pt/NiO/Pt Heterostructure for Resistance Random Access Memory

  • Kim, Hyung-Kyu;Bae, Jee-Hwan;Kim, Tae-Hoon;Song, Kwan-Woo;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.207-211
    • /
    • 2012
  • We examined the electrical properties and microstructure of NiO produced using a sol-gel method and Ni nitrate hexahydrate ($Ni[NO_3]_2{\cdot}6H_2O$) to investigate if this NiO thin film can be used as an insulator layer for resistance random access memory (ReRAM) devices. It was found that as-prepared NiO film was polycrystalline and presented as the nonstoichiometric compound $Ni_{1+x}O$ with Ni interstitials (oxygen vacancies). Resistances-witching behavior was observed in the range of 0~2 V, and the low-resistance state and high-resistance state were clearly distinguishable (${\sim}10^3$ orders). It was also demonstrated that NiO could be patterned directly by KrF eximer laser irradiation using a shadow mask. NiO thin film fabricated by the sol-gel method does not require any photoresist or vacuum processes, and therefore has potential for application as an insulating layer in low-cost ReRAM devices.

Atomistic simulations of defect accumulation and evolution in heavily irradiated titanium for nuclear-powered spacecraft

  • Hai Huang;Xiaoting Yuan;Longjingrui Ma;Jiwei Lin;Guopeng Zhang;Bin Cai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2298-2304
    • /
    • 2023
  • Titanium alloys are expected to become one of the candidate materials for nuclear-powered spacecraft due to their excellent overall performance. Nevertheless, atomistic mechanisms of the defect accumulation and evolution of the materials due to long-term exposure to irradiation remain scarcely understood by far. Here we investigate the heavy irradiation damage in a-titanium with a dose as high as 4.0 canonical displacements per atom (cDPA) using atomistic simulations of Frenkel pair accumulation. Results show that the content of surviving defects increases sharply before 0.04 cDPA and then decreases slowly to stabilize, exhibiting a strong correlation with the system energy. Under the current simulation conditions, the defect clustering fraction may be not directly dependent on the irradiation dose. Compared to vacancies, interstitials are more likely to form clusters, which may further cause the formation of 1/3<1210> interstitial-type dislocation loops extended along the (1010) plane. This study provides an important insight into the understanding of the irradiation damage behaviors for titanium.

Determination of Nonstoichiometry$(\delta)$and Phase Stability Region of $(Mg_{0.29}Fe_{0.71})_{3-}\deltaO_4$ by a Coulometric Titration Method (전하적정법에 의한 $(Mg_{0.29}Fe_{0.71})_{3-}\deltaO_4$ 훼라이트의 Nonstoichiometry$(\delta)$와 상안정 영역 결정)

  • 강선호;유한일;강대석;유병두
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1491-1500
    • /
    • 1994
  • Nonstoichiometry($\delta$) and the phase stability region of a ferrite spinel (Mg0.29Fe0.71)3-$\delta$O4 have been investigated by a coulometric titration method as a function of temperature(T) and oxygen partial pressure(Po2). It has been found that the spinel is thermodynamically stable in the ranges -8.0$\leq$log(PO2/atm)$\leq$-2.4, -7.0$\leq$log(PO2/atm)$\leq$-1.7 respectvely at 100$0^{\circ}C$. The nonstoichiometry extends over the ranges of -0.004$\leq$$\delta$$\leq$0.007, -0.008$\leq$$\delta$$\leq$0.006, -0.033$\leq$$\delta$$\leq$0.004 at 100$0^{\circ}C$, 120$0^{\circ}C$, respectvely. The observed PO2-dependence of $\delta$ suggests that the majority ionic defects are cation interstitials in the low PO2 region and cation vacancies in the high PO2 region.

  • PDF

Enhanced Photocurrent from CdS Sensitized ZnO Nanorods

  • Nayak, Jhasaketan;Son, Min-Kyu;Kim, Jin-Kyoung;Kim, Soo-Kyoung;Lee, Jeong-Hoon;Kim, Hee-Je
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.965-970
    • /
    • 2012
  • Structure and optical properties of cadmium sulphide-zinc oxide composite nanorods have been evaluated by suitable characterization techniques. The X-ray diffraction spectrum contains a series of peaks corresponding to reflections from various sets of lattice planes of hexagonal ZnO as well as CdS. The above observation is supported by the Micro-Raman spectroscopy result. The optical reflectance spectra of CdS-ZnO is compared with that of ZnO where we observe an enhanced absorption and hence diminished reflection from CdS-ZnO compared to that from only ZnO. A very small intensity of the visible photoluminescence peak observed at 550 nm proves that the ZnO nanorods have very low concentrations of point defects such as oxygen vacancies and zinc interstitials. The photocurrent in the visible region has been significantly enhanced due to deposition of CdS on the surface of the ZnO nanorods. CdS acts as a visible sensitizer because of its lower band gap compared to ZnO.

A Novel Atomic Layer Deposited Al2O3 Film with Diluted NH4OH for High-Efficient c-Si Solar Cell

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • In this paper, $Al_2O_3$ film deposited by thermal atomic layer deposition (ALD) with diluted $NH_4OH$ instead of $H_2O$ was suggested for passivation layer and anti-reflection (AR) coating of the p-type crystalline Si (c-Si) solar cell application. It was confirmed that the deposition rate and refractive index of $Al_2O_3$ film was proportional to the $NH_4OH$ concentration. $Al_2O_3$ film deposited with 5 % $NH_4OH$ has the greatest negative fixed oxide charge density ($Q_f$), which can be explained by aluminum vacancies ($V_{Al}$) or oxygen interstitials ($O_i$) under O-rich condition. $Al_2O_3$ film deposited with $NH_4OH$ 5 % condition also shows lower interface trap density ($D_{it}$) distribution than those of other conditions. At $NH_4OH$ 5 % condition, moreover, $Al_2O_3$ film shows the highest excess carrier lifetime (${\tau}_{PCD}$) and the lowest surface recombination velocity ($S_{eff}$), which are linked with its passivation properties. The proposed $Al_2O_3$ film deposited with diluted $NH_4OH$ is very promising for passivation layer and AR coating of the p-type c-Si solar cell.

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF

Thermal Recovery Behaviors of Neutron Irradiated Mn-Mo-Ni Low Alloy Steel (중성자에 조사된 Mn-Mo-Ni 저합금강의 열처리 회복거동)

  • Jang, Gi-Ok;Ji, Se-Hwan;Sim, Cheol-Mu;Park, Seung-Sik;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.327-332
    • /
    • 1999
  • The recovery activation energy, the order of reaction and the recovery rate constant were detemined by isochronal and isothermal annealing treatment to investigate the recovery behaviors of neutron irradiated Mn-Mo-Ni low alloy steels$(fluence: 2.3\times10^{19}ncm^{-2}, 553K, E\geq1.0 MeV)$. Vickers microhardness tests were conducted to trace the recovery behavior after heat treatments. The results were analyzed in terms of recovery stages, behavior of responsible defects and recovery kinetics. It was shown that recovery occurred through two annealing stages(stage I : 703-753K, stage n : 813-873K) with re$\infty$very activation energies of 2.5 eV and 2.93 eV for each stage I and n, respectively. From the comparison of unirradiated and irradiated isochronal anneal curves, a radiation anneal hardening(RAH) peak was identified at around 813K. Most of recovery have occurred during about 120 min irrespective of isothermal annealing temperatures of 743K and 833K. Recovery rate constants were determined to be $3.4\times10^{-4}min^{-1} and 7.1\times10^{-4}min^{-1}$ for stage I and II, respectively. The order of reaction was about 2 for both recovery stages. Comparing the obtained data with those of previously reported results on neutron irradiated Mn- Mo- Ni steels, the thermal recovery be­havior of the present material seems to occur by the dissociation of point defect clusters formed during irradiation, and by the recombination process of self-interstitials and vacancies from dissociated vacancy clusters.

  • PDF