• Title/Summary/Keyword: Interstitials and vacancies

Search Result 17, Processing Time 0.021 seconds

Drift Diffusion of Radiation-produced Point Defects to Edge Dislocation

  • Park, S.S.;Chang, K.O.;Choi, S.P.;Kim, C.O.
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.151-156
    • /
    • 1999
  • Under the heavy irradiation of crystalline materials when the production and the recombination of interstitials and vacancies are included, the diffusion equations become nonlinear. An effort has been made to arrange an appropriate transformation of these nonlinear differential equations to more solvable Poisson's equations, finally analytical solutions for simultaneously calculating the concentrations of interstitials and vacancies in the angular dependent Cottrell's potential of the edge dislocation have been derived from the well-known Green's theorem and perturbation theory.

  • PDF

Drift Diffusion of Radiation-produced Point Defects to Edge Dislocation

  • S. S. park;K. O. Chang;Park, S. P.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.160-165
    • /
    • 1998
  • Under the heavy irradiation, when the production and the recombination of interstitials and vacancies are included, the diffusion equations become nonlinear. An effort has been made to arrange an appropriated transformation of these nonlinear differential equations to soluble Poisson's equations, so that analytical solutions for simultaneously calculating the concentrations of interstitials and vacancies in the angular dependent Cottrell's potential of the edge dislocation have been derived from the well-known Green's theorem and perturbation theory.

  • PDF

The formation mechanism of grown-in defects in CZ silicon crystals based on thermal gradients measured by thermocouples near growth interfaces

  • Abe, Takao
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.402-416
    • /
    • 1999
  • The thermal distributions near the growth interface of 150nm CZ crystals were measured by three thermocouples installed at the center, middle (half radius) and edge (10nm from surface) of the crystals. The results show that larger growth rates produced smaller thermal gradients. This contradicts the widely used heat flux balance equation. Using this fact, it is confirmed in CZ crystals that the type of point defects created is determined by the value of the thermal gradient(G) near the interface during growth, as already reported for FZ crystals. Although depending on the growth systems the effective length of the thermal gradient for defect generation are varied, we defined the effective length as 10n,\m from th interface in this experiment. If the G is roughly smaller than 20C/cm, vacancy rich CZ crystals are produced. If G is larger than 25C/cm, the species of point defects changes dramatically from vacancies to interstitials. The experimental results after detaching FZ and CZ crystals from the melt show that growth interfaces are filled with vacancies. We propose that large G produces shrunk lattice spacing and in order to relax such lattice excess interstitials are necessary. Such interstitials recombine with vacancies which were generated at the growth interface, nest occupy interstitial sites and residuals aggregate themselves to make stacking faults and dislocation loops during cooling. The shape of the growth interface is also determined by te distributions of G across the interface. That is, the small G and the large G in the center induce concave and convex interfaces to the melts, respectively.

  • PDF

Molecular dynamics simulation of primary irradiation damage in Ti-6Al-4V alloys

  • Tengwu He;Xipeng Li;Yuming Qi;Min Zhao;Miaolin Feng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1480-1489
    • /
    • 2024
  • Displacement cascade behaviors of Ti-6Al-4V alloys are investigated using molecular dynamics (MD) simulation. The embedded atom method (EAM) potential including Ti, Al and V elements is modified by adding Ziegler-Biersack-Littmark (ZBL) potential to describe the short-range interaction among different atoms. The time evolution of displacement cascades at the atomic scale is quantitatively evaluated with the energy of primary knock-on atom (PKA) ranging from 0.5 keV to 15 keV, and that for pure Ti is also computed as a comparison. The effects of temperature and incident direction of PKA are studied in detail. The results show that the temperature reduces the number of surviving Frenkel pairs (FPs), and the incident direction of PKA shows little correlation with them. Furthermore, the increasing temperature promotes the point defects to form clusters but reduces the number of defects due to the accelerated recombination of vacancies and interstitial atoms at relatively high temperature. The cluster fractions of interstitials and vacancies both increase with the PKA energy, whereas the increase of interstitial cluster is slightly larger due to their higher mobility. Compared to pure Ti, the presence of Al and V is beneficial to the formation of interstitial clusters and indirectly hinders the production of vacancy clusters.

THE FORMATION MECHANISM OF GROWN-IN DEFECTS IN CZ SILICON CRYSTALS BASED ON THERMAL GRADIENTS MEASURED BY THERMOCOUPLES NEAR GROWTH INTERFACES

  • Abe, Takao
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.187-207
    • /
    • 1999
  • The thermal distributions near the growth interface of 150mm CZ crystals were measured by three thermocouples installed at the center, middle (half radius) and edge (10m from surface) of the crystals. The results show that larger growth rates produced smaller thermal gradients. This contradicts the widely used heat flux balance equation. Using this fact, it si confirmed in CZ crystals that the type of point defects created is determined by the value of the thermal gradient (G) near the interface during growth, as already reported for FZ crystals. Although depending on the growth systems the effective lengths of the thermal gradient for defect generation are varied, were defined the effective length as 10mm from the interface in this experiment. If the G is roughly smaller than 20C/cm, vacancy rich CZ crystals are produced. If G is larger than 25C/cm, the species of point defects changes dramatically from vacancies to interstitial. The experimental results which FZ and CZ crystals are detached from the melt show that growth interfaces are filled with vacancy. We propose that large G produces shrunk lattice spacing and in order to relax such lattice excess interstitial are necessary. Such interstitial recombine with vacancies which were generated at the growth interface, next occupy interstitial sites and residuals aggregate themselves to make stacking faults and dislocation loops during cooling. The shape of the growth interface is also determined by the distributions of G across the interface. That is, the small G and the large G in the center induce concave and convex interfaces to the melt, respectively.

  • PDF

Kinetic Monte Carlo Simulations for Defects Diffusion in Ion-implanted Crystalline

  • Jihyun Seo;Hwang, Ok-Chi;Ohseob Kwon;Kim, Kidong;Taeyoung Won
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.731-734
    • /
    • 2003
  • An atomistic process modeling, Kinetic Monte Carlo simulation, has the advantage of being both conceptually simple and extremely powerful. Instead of diffusion equations, it is based on the definitions of the interactions between individual atoms and defects. Those interactions can be derived either directly from molecular dynamics, first principles calculations, or from experiment. In this paper, as a simple illustration of the kinetic Monte Carlo we simulate defects (self-interstitials and vacancies) diffusion after ion implantation in Si crystalline.

  • PDF

A study on the identification of HPHT diamond by the photoluminescence (PL을 이용한 HPHT 처리된 다이아몬드 감별에 관한 연구)

  • 김영출;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2003
  • The PL data bases reveal the fact that a part of lattice of HPHT treated diamond is reconfigured by the reduction, elimination, generation, and movement of vacancies and interstitials as well as of impurity elements. In particular, this very sensitive method clearly illustrated that minute amount of nitrogen impurities is present in all of these type IIa diamonds, and reveal the presence of a considerable number of point defects dispersed throughout the crystal lattice.

Defect Model for the Oxygen Potential of Urania doped wit Gadolinia (가돌리니아 첨가 이산화우라늄의 점결함 모델에 의한 산소포텐샬 연구)

  • Park, Kwang-Heon;Kim, Jang-Wook
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.321-327
    • /
    • 1991
  • A defect model e)[plaining the oxygen potential of Gadolinia doped urania based on the defect structure of pure urania has been developed. Gd-dopants are assumed to stay in the cation sites pushing away nearby oxygen interstitials reducing the number of interstitial sites. Gd-dopants also form dopant-vacancy clusters in the abundance of oxygen vacancies. This model explains the discontinuous change of the oxygen potential at O/M= as well as the increase of the potential with the dopant concentration.

  • PDF

A Study on the Properties of Al doped ZnO (AZO) Thin Films Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 Al이 도핑 된 ZnO (AZO) 박막의 특성에 대한 연구)

  • Yun, Eui-Jung;Jung, Myung-Hee;Park, Nho-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.8-16
    • /
    • 2010
  • In this paper, we investigated the effects of $O_2$ fraction on the properties of Al-doped ZnO (AZO) thin films prepared by radio frequency (RF) magnetron sputtering. Hall, photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) measurements revealed that the p-type conductivity was exhibited for AZO films with an $O_2$ fraction of 0.9 while the n-type conductivity was observed for films with $O_2$ fractions in range of 0 - 0.6. PL and XPS also showed that the acceptor-like defects, such as zinc vacancies and oxygen interstitials, increased in films prepared by an $O_2$ fraction of 0.9, resulting in the p-type conductivity in the films. Hall results indicated that AZO films prepared by $O_2$ fractions in range of 0 - 0.6 can be used for electrode layers in the applications of transparent thin film transistor. We concluded from the X-ray diffraction analysis that worse crystallinity with a smaller grain size as well as higher tensile stress was observed in the films prepared by a higher $O_2$ fraction, which is related to incorporation of more oxygen atoms into the films during deposition. The study of atomic force microscope suggested that the smoother surface morphology was observed in films prepared by using $O_2$ fraction, which causes the higher resistivity in those films, as evidenced by Hall measurements.

A study on p-type ZnO thin film characterization and the stability from oxygen fraction variation ($O_2$ fraction 변화에 따른 undoped p-type ZnO 특성 및 안정화에 대한 연구)

  • Park, Hyeong-Sik;Jang, Kyung-Soo;Jung, Sung-Wook;Jeong, Han-Uk;Yun, Eui-Jung;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.143-143
    • /
    • 2010
  • In this study, we demonstrate that ZnO deposited onto $SiO_2$ substrates by magnetron sputtering produces p-type ZnO at higher $O_2$ pressure and n-type ZnO at lower $O_2$ pressure. We also report the effect of hydrogen peroxide ($H_2O_2$) on the stability of undoped ZnO thin films. The films were immersed in 30% $H_2O_2$ for 1 min at $30^{\circ}C$ and annealed in $O_2$at $450^{\circ}C$. The carrier concentration, mobility. and conductivity were measured by a Hall effect measurement system. The Hall measurement results for ZnO films untreated with $H_2O_2$ but annealed in $O_2$ indicate that oxygen fraction greater than ~0.5 produces undoped p-type ZnO films, whereas oxygen fraction less than ~0.5 produces undoped n-type ZnO films. This is attributed to the fact that the oxygen vacancies ($V_o$) decrease and the oxygen interstitials ($O_i$) or zinc vacancies ($V_{Zn}$) increase with increasing oxygen atoms incorporated into ZnO films during deposition and $O_2$ post-annealing.

  • PDF