• Title/Summary/Keyword: Interpolation Method

Search Result 1,890, Processing Time 0.032 seconds

IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM (SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver와 Immersed Boundary Method)

  • Kim, G.H.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.397-403
    • /
    • 2010
  • The Immersed boundary method(IBM) is one of CFD techniques which can simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In these cases, pressure buildup near IB was found to occur when linear interpolation and stadard mass conservation is used and the interpolation scheme became complicated when higher order of interpolation is adopted. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. Bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies.

  • PDF

A New Method of the Global Interpolation in NURBS Surface (NURBS Surface Global Interpolation에 대한 한 방법)

  • 정형배;나승수;박종환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.237-243
    • /
    • 1997
  • A new method is introduced for the interpolation in NURBS Surface. This method uses the basis functions to assign the parameter values to the arbitrary set of geometric data and uses the iteration method to compute the control net. The advantages of this method are the feasible transformation of the data set to the matrix form and the effective surface generation as a result, especially to the design engineer.

  • PDF

DECAY CHARACTERISTICS OF THE HAT INTERPOLATION WAVELET COEFFICIENTS IN THE TWO-DIMENSIONAL MULTIRESOLUTION REPRESENTATION

  • KWON KIWOON;KIM YOON YOUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.305-334
    • /
    • 2005
  • The objective of this study is to analyze the decay characteristics of the hat interpolation wavelet coefficients of some smooth functions defined in a two-dimensional space. The motivation of this research is to establish some fundamental mathematical foundations needed in justifying the adaptive multiresolution analysis of the hat-interpolation wavelet-Galerkin method. Though the hat-interpolation wavelet-Galerkin method has been successful in some classes of problems, no complete error analysis has been given yet. As an effort towards this direction, we give estimates on the decaying ratios of the wavelet coefficients at children interpolation points to the wavelet coefficient at the parent interpolation point. We also give an estimate for the difference between non-adaptively and adaptively interpolated representations.

Finding Declinations Using Lookup Tables and Bilinear Interpolation in the Application of Digital Magnetic Compass

  • Yim, Jeong-Bin;Kim, Dae-Hee
    • Journal of Navigation and Port Research
    • /
    • v.36 no.9
    • /
    • pp.699-706
    • /
    • 2012
  • This paper describes Declination interpolation method in the application of Digital Magnetic Compass(DMC) with small capacity memory for relatively low-priced system. The purpose of this study is to find accurate declination values using Declination Lookup Table(DLT) and Secular Variation Table(SVT) with the Bilinear interpolation method having four points data only. World Magnetic Model with Gauss coefficients produced by NOAA is used in the calculation of DLT and SVT at desired years. To verify the applicability of the proposed method, the simulation tests and the error analysis are carried out in this work. As results from tests, the interpolation error is within 0.01 degree that is much enough to implement high accurate DMC comparing with commercial DMCs on the market. In summary, the declination interpolation method, proposed in this study, can be useful in the application of DMC.

Improvement of Analytic Reconstruction Algorithms Using a Sinogram Interpolation Method for Sparse-angular Sampling with a Photon-counting Detector

  • Kim, Dohyeon;Jo, Byungdu;Park, Su-Jin;Kim, Hyemi;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.105-110
    • /
    • 2016
  • Sparse angular sampling has been studied recently owing to its potential to decrease the radiation exposure from computed tomography (CT). In this study, we investigated the analytic reconstruction algorithm in sparse angular sampling using the sinogram interpolation method for improving image quality and computation speed. A prototype of the spectral CT system, which has a 64-pixel Cadmium Zinc Telluride (CZT)-based photon-counting detector, was used. The source-to-detector distance and the source-to-center of rotation distance were 1,200 and 1,015 mm, respectively. Two energy bins (23~33 keV and 34~44 keV) were set to obtain two reconstruction images. We used a PMMA phantom with height and radius of 50.0 mm and 17.5 mm, respectively. The phantom contained iodine, gadolinium, calcification, and lipid. The Feld-kamp-Davis-Kress (FDK) with the sinogram interpolation method and Maximum Likelihood Expectation Maximization (MLEM) algorithm were used to reconstruct the images. We evaluated the signal-to-noise ratio (SNR) of the materials. The SNRs of iodine, calcification, and liquid lipid were increased by 167.03%, 157.93%, and 41.77%, respectively, with the 23~33 keV energy bin using the sinogram interpolation method. The SNRs of iodine, calcification, and liquid state lipid were also increased by 107.01%, 13.58%, and 27.39%, respectively, with the 34~44 keV energy bin using the sinogram interpolation method. Although the FDK algorithm with the sinogram interpolation did not produce better results than the MLEM algorithm, it did result in comparable image quality to that of the MLEM algorithm. We believe that the sinogram interpolation method can be applied in various reconstruction studies using the analytic reconstruction algorithm. Therefore, the sinogram interpolation method can improve the image quality in sparse-angular sampling and be applied to CT applications.

A Study on the Interpolation of Missing Rainfall : 1. Methodologies and Weighting Factors (결측 강우량 보정방법에 관한 연구: 1. 방법론 및 가중치 산정)

  • Kim Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.684-689
    • /
    • 2006
  • Rainfall is the most basic input data to analyze the hydrologic system. When we measure the rainfall data, the rainfall data can be missing due to various reasons. Therefore, various interpolation methods are available for compensating the missing data. However, the interpolation methods were used without considering their applicability and accuracy. This study compares the interpolation methods such as the arithmetic mean method, normal ratio method, modified normal ratio method, inverse distance method, linear programming, Kriging method to estimate the existing rainfall correction method.

  • PDF

A comparative study of different radial basis function interpolation algorithms in the reconstruction and path planning of γ radiation fields

  • Yulong Zhang;Jinjia Cao;Biao Zhang;Xiaochang Zheng;Wei Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2806-2820
    • /
    • 2024
  • Accurate reconstruction of radiation field and path planning are very important for the safety of operators in the process of dismantling nuclear facilities. Based on radial basis function (RBF) interpolation algorithm, this paper discussed the application of inverse multiquadric radial basis Function (IMRBF) interpolation method to the reconstruction of gamma radiation field, and proved the feasibility of reconstructing a radiation field with multiple γ sources. The average relative errors of IMRBF interpolation results were 4.28% and 8.76%, respectively, for the experimental scenarios with single and double gamma sources. After comparing the consistency between the simulated scene and the experimental scene, IMRBF method and Cubic Spline method were respectively used to reconstruct the gamma radiation field by Geant4 simulation data. The results showed that the interpolation accuracy of IMRBF method was superior to that of Cubic Spline method. Further, more RBF interpolation algorithms were used to reconstruct the multi-γ source radiation field, and then the Probabilistic Roadmap (PRM) algorithm was used to optimize the human walking path in the radiation field reconstructed by different interpolation methods. The optimal paths in radiation fields generated by multiple interpolation methods were compared. The results herein contribute to a comprehensive understanding of RBF interpolation methods in reconstructing γ radiation fields and their application in optimizing paths in radiation environments. The insights may provide valuable information for decision-making in radiation protection during the decommissioning of nuclear facilities.

A Proposal of an Interpolation Method of Missing Wind Velocity Data in Writing a Typical Weather Data (표준기상데이터 작성 시 누락된 풍속 데이터의 보간 방법 제안)

  • Park, So-Woo;Kim, Joo-wook;Song, Doo-sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.79-91
    • /
    • 2017
  • The meteorological data of 1 hour interval are required to write a typical weather data for building energy simulation. However, many meterological data are missing and the interpolation method to recover the missing data is required. Especially, lots of meterological data are replicated by linear interpolation method because the changes are not significant. While, the wind velocity fluctuates with the time or locations, so linear interpolation method is not appropriate in interpolation of the wind velocity data. In this study, three interpolation methods, using surrounding wind velocity data, Inverse Distance Weighting (IDW), Revised Inverse Distance Weighting (IDW-r), were analyzed considering the characteristics of wind velocity. The Revised Inverse Distance Weighting method, proposed in this study, showed the highest reliability in restoration of the wind velocity data among the analyzed methods.

A Study on the Improvement of Digital Periapical Images using Image Interpolation Methods (영상보간법을 이용한 디지털 치근단 방사선영상의 개선에 관한 연구)

  • Song Nam-Kyu;Koh Kawng-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.2
    • /
    • pp.387-413
    • /
    • 1998
  • Image resampling is of particular interest in digital radiology. When resampling an image to a new set of coordinate, there appears blocking artifacts and image changes. To enhance image quality, interpolation algorithms have been used. Resampling is used to increase the number of points in an image to improve its appearance for display. The process of interpolation is fitting a continuous function to the discrete points in the digital image. The purpose of this study was to determine the effects of the seven interpolation functions when image resampling in digital periapical images. The images were obtained by Digora, CDR and scanning of Ektaspeed plus periapical radiograms on the dry skull and human subject. The subjects were exposed to intraoral X-ray machine at 60kVp and 70 kVp with exposure time varying between 0.01 and 0.50 second. To determine which interpolation method would provide the better image, seven functions were compared; (1) nearest neighbor (2) linear (3) non-linear (4) facet model (5) cubic convolution (6) cubic spline (7) gray segment expansion. And resampled images were compared in terms of SNR(Signal to Noise Ratio) and MTF(Modulation Transfer Function) coefficient value. The obtained results were as follows ; 1. The highest SNR value(75.96dB) was obtained with cubic convolution method and the lowest SNR value(72.44dB) was obtained with facet model method among seven interpolation methods. 2. There were significant differences of SNR values among CDR, Digora and film scan(P<0.05). 3. There were significant differences of SNR values between 60kVp and 70kVp in seven interpolation methods. There were significant differences of SNR values between facet model method and those of the other methods at 60kVp(P<0.05), but there were not significant differences of SNR values among seven interpolation methods at 70kVp(P>0.05). 4. There were significant differences of MTF coefficient values between linear interpolation method and the other six interpolation methods (P< 0.05). 5. The speed of computation time was the fastest with nearest -neighbor method and the slowest with non-linear method. 6. The better image was obtained with cubic convolution, cubic spline and gray segment method in ROC analysis. 7. The better sharpness of edge was obtained with gray segment expansion method among seven interpolation methods.

  • PDF

Interpolation of GPS Data Using Lagrange Interpolation Method (Lagrange 보간법을 이용한 GPS Data 보간)

  • 이은수;이용욱;박정현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.129-133
    • /
    • 2004
  • 9 GPS data with a 30 second sampling rate were extracted from the GPS raw data that recorded with 1 second interval for interpolation. 9 GPS data were interpolated using lagrange interpolation method and compared to the GPS raw data. Using a 9th-order interpolation, error of interpolated code data were within 0.5m.

  • PDF